Mercurial > ift6266
comparison deep/convolutional_dae/salah_exp/utils.py @ 358:31641a84e0ae
Initial commit for the experimental setup of the denoising convolutional network
author | humel |
---|---|
date | Thu, 22 Apr 2010 00:49:42 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
357:9a7b74927f7d | 358:31641a84e0ae |
---|---|
1 #!/usr/bin/python | |
2 # coding: utf-8 | |
3 | |
4 from __future__ import with_statement | |
5 | |
6 from jobman import DD | |
7 | |
8 # from pylearn codebase | |
9 # useful in __init__(param1, param2, etc.) to save | |
10 # values in self.param1, self.param2... just call | |
11 # update_locals(self, locals()) | |
12 def update_locals(obj, dct): | |
13 if 'self' in dct: | |
14 del dct['self'] | |
15 obj.__dict__.update(dct) | |
16 | |
17 # from a dictionary of possible values for hyperparameters, e.g. | |
18 # hp_values = {'learning_rate':[0.1, 0.01], 'num_layers': [1,2]} | |
19 # create a list of other dictionaries representing all the possible | |
20 # combinations, thus in this example creating: | |
21 # [{'learning_rate': 0.1, 'num_layers': 1}, ...] | |
22 # (similarly for combinations (0.1, 2), (0.01, 1), (0.01, 2)) | |
23 def produit_cartesien_jobs(val_dict): | |
24 job_list = [DD()] | |
25 all_keys = val_dict.keys() | |
26 | |
27 for key in all_keys: | |
28 possible_values = val_dict[key] | |
29 new_job_list = [] | |
30 for val in possible_values: | |
31 for job in job_list: | |
32 to_insert = job.copy() | |
33 to_insert.update({key: val}) | |
34 new_job_list.append(to_insert) | |
35 job_list = new_job_list | |
36 | |
37 return job_list | |
38 | |
39 def test_produit_cartesien_jobs(): | |
40 vals = {'a': [1,2], 'b': [3,4,5]} | |
41 print produit_cartesien_jobs(vals) | |
42 | |
43 | |
44 # taken from http://stackoverflow.com/questions/276052/how-to-get-current-cpu-and-ram-usage-in-python | |
45 """Simple module for getting amount of memory used by a specified user's | |
46 processes on a UNIX system. | |
47 It uses UNIX ps utility to get the memory usage for a specified username and | |
48 pipe it to awk for summing up per application memory usage and return the total. | |
49 Python's Popen() from subprocess module is used for spawning ps and awk. | |
50 | |
51 """ | |
52 | |
53 import subprocess | |
54 | |
55 class MemoryMonitor(object): | |
56 | |
57 def __init__(self, username): | |
58 """Create new MemoryMonitor instance.""" | |
59 self.username = username | |
60 | |
61 def usage(self): | |
62 """Return int containing memory used by user's processes.""" | |
63 self.process = subprocess.Popen("ps -u %s -o rss | awk '{sum+=$1} END {print sum}'" % self.username, | |
64 shell=True, | |
65 stdout=subprocess.PIPE, | |
66 ) | |
67 self.stdout_list = self.process.communicate()[0].split('\n') | |
68 return int(self.stdout_list[0]) | |
69 |