comparison deep/convolutional_dae/salah_exp/stacked_convolutional_dae_uit.py @ 358:31641a84e0ae

Initial commit for the experimental setup of the denoising convolutional network
author humel
date Thu, 22 Apr 2010 00:49:42 -0400
parents
children c05680f8c92f
comparison
equal deleted inserted replaced
357:9a7b74927f7d 358:31641a84e0ae
1 import numpy
2 import theano
3 import time
4 import sys
5 import theano.tensor as T
6 from theano.tensor.shared_randomstreams import RandomStreams
7 import theano.sandbox.softsign
8 import copy
9 from theano.tensor.signal import downsample
10 from theano.tensor.nnet import conv
11
12
13 import ift6266.datasets
14 from ift6266.baseline.log_reg.log_reg import LogisticRegression
15
16 from theano.tensor.xlogx import xlogx, xlogy0
17 # it's target*log(output)
18 def binary_cross_entropy(target, output, sum_axis=1):
19 XE = xlogy0(target, output) + xlogy0((1 - target), (1 - output))
20 return -T.sum(XE, axis=sum_axis)
21
22
23
24 class SigmoidalLayer(object):
25 def __init__(self, rng, input, n_in, n_out):
26
27 self.input = input
28
29 W_values = numpy.asarray( rng.uniform( \
30 low = -numpy.sqrt(6./(n_in+n_out)), \
31 high = numpy.sqrt(6./(n_in+n_out)), \
32 size = (n_in, n_out)), dtype = theano.config.floatX)
33 self.W = theano.shared(value = W_values)
34
35 b_values = numpy.zeros((n_out,), dtype= theano.config.floatX)
36 self.b = theano.shared(value= b_values)
37
38 self.output = T.tanh(T.dot(input, self.W) + self.b)
39 self.params = [self.W, self.b]
40
41 class dA_conv(object):
42
43 def __init__(self, input, filter_shape, corruption_level = 0.1,
44 shared_W = None, shared_b = None, image_shape = None, num = 0,batch_size=20):
45
46 theano_rng = RandomStreams()
47
48 fan_in = numpy.prod(filter_shape[1:])
49 fan_out = filter_shape[0] * numpy.prod(filter_shape[2:])
50
51 center = theano.shared(value = 1, name="center")
52 scale = theano.shared(value = 2, name="scale")
53
54 if shared_W != None and shared_b != None :
55 self.W = shared_W
56 self.b = shared_b
57 else:
58 initial_W = numpy.asarray( numpy.random.uniform(
59 low = -numpy.sqrt(6./(fan_in+fan_out)),
60 high = numpy.sqrt(6./(fan_in+fan_out)),
61 size = filter_shape), dtype = theano.config.floatX)
62 initial_b = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
63 self.W = theano.shared(value = initial_W, name = "W")
64 self.b = theano.shared(value = initial_b, name = "b")
65
66
67 initial_b_prime= numpy.zeros((filter_shape[1],),dtype=theano.config.floatX)
68
69 self.b_prime = theano.shared(value = initial_b_prime, name = "b_prime")
70
71 self.x = input
72
73 self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level,dtype=theano.config.floatX) * self.x
74
75 conv1_out = conv.conv2d(self.tilde_x, self.W, filter_shape=filter_shape,
76 image_shape=image_shape,
77 unroll_kern=4,unroll_batch=4,
78 border_mode='valid')
79
80
81 self.y = T.tanh(conv1_out + self.b.dimshuffle('x', 0, 'x', 'x'))
82
83
84 da_filter_shape = [ filter_shape[1], filter_shape[0], filter_shape[2],\
85 filter_shape[3] ]
86 da_image_shape = [ batch_size, filter_shape[0], image_shape[2]-filter_shape[2]+1,
87 image_shape[3]-filter_shape[3]+1 ]
88 #import pdb; pdb.set_trace()
89 initial_W_prime = numpy.asarray( numpy.random.uniform( \
90 low = -numpy.sqrt(6./(fan_in+fan_out)), \
91 high = numpy.sqrt(6./(fan_in+fan_out)), \
92 size = da_filter_shape), dtype = theano.config.floatX)
93 self.W_prime = theano.shared(value = initial_W_prime, name = "W_prime")
94
95 conv2_out = conv.conv2d(self.y, self.W_prime,
96 filter_shape = da_filter_shape,\
97 image_shape = da_image_shape, \
98 unroll_kern=4,unroll_batch=4, \
99 border_mode='full')
100
101 self.z = (T.tanh(conv2_out + self.b_prime.dimshuffle('x', 0, 'x', 'x'))+center) / scale
102
103 if num != 0 :
104 scaled_x = (self.x + center) / scale
105 else:
106 scaled_x = self.x
107 self.L = - T.sum( scaled_x*T.log(self.z) + (1-scaled_x)*T.log(1-self.z), axis=1 )
108
109 self.cost = T.mean(self.L)
110
111 self.params = [ self.W, self.b, self.b_prime ]
112
113 class LeNetConvPoolLayer(object):
114
115 def __init__(self, rng, input, filter_shape, image_shape=None, poolsize=(2,2)):
116 self.input = input
117
118 W_values = numpy.zeros(filter_shape, dtype=theano.config.floatX)
119 self.W = theano.shared(value=W_values)
120
121 b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
122 self.b = theano.shared(value=b_values)
123
124 conv_out = conv.conv2d(input, self.W,
125 filter_shape=filter_shape, image_shape=image_shape,
126 unroll_kern=4,unroll_batch=4)
127
128
129 fan_in = numpy.prod(filter_shape[1:])
130 fan_out = filter_shape[0] * numpy.prod(filter_shape[2:]) / numpy.prod(poolsize)
131
132 W_bound = numpy.sqrt(6./(fan_in + fan_out))
133 self.W.value = numpy.asarray(
134 rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
135 dtype = theano.config.floatX)
136
137
138 pooled_out = downsample.max_pool2D(conv_out, poolsize, ignore_border=True)
139
140 self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
141 self.params = [self.W, self.b]
142
143
144 class CSdA():
145 def __init__(self, n_ins_mlp,batch_size, conv_hidden_layers_sizes,
146 mlp_hidden_layers_sizes, corruption_levels, rng, n_out,
147 pretrain_lr, finetune_lr):
148
149 # Just to make sure those are not modified somewhere else afterwards
150 hidden_layers_sizes = copy.deepcopy(mlp_hidden_layers_sizes)
151 corruption_levels = copy.deepcopy(corruption_levels)
152
153 #update_locals(self, locals())
154
155
156
157 self.layers = []
158 self.pretrain_functions = []
159 self.params = []
160 self.n_layers = len(conv_hidden_layers_sizes)
161 self.mlp_n_layers = len(mlp_hidden_layers_sizes)
162
163 self.x = T.matrix('x') # the data is presented as rasterized images
164 self.y = T.ivector('y') # the labels are presented as 1D vector of
165
166 for i in xrange( self.n_layers ):
167 filter_shape=conv_hidden_layers_sizes[i][0]
168 image_shape=conv_hidden_layers_sizes[i][1]
169 max_poolsize=conv_hidden_layers_sizes[i][2]
170
171 if i == 0 :
172 layer_input=self.x.reshape((batch_size, 1, 32, 32))
173 else:
174 layer_input=self.layers[-1].output
175
176 layer = LeNetConvPoolLayer(rng, input=layer_input,
177 image_shape=image_shape,
178 filter_shape=filter_shape,
179 poolsize=max_poolsize)
180 print 'Convolutional layer', str(i+1), 'created'
181
182 self.layers += [layer]
183 self.params += layer.params
184
185 da_layer = dA_conv(corruption_level = corruption_levels[0],
186 input = layer_input,
187 shared_W = layer.W, shared_b = layer.b,
188 filter_shape=filter_shape,
189 image_shape = image_shape, num=i , batch_size=batch_size)
190
191 gparams = T.grad(da_layer.cost, da_layer.params)
192
193 updates = {}
194 for param, gparam in zip(da_layer.params, gparams):
195 updates[param] = param - gparam * pretrain_lr
196
197 update_fn = theano.function([self.x], da_layer.cost, updates = updates)
198
199 self.pretrain_functions += [update_fn]
200
201 for i in xrange( self.mlp_n_layers ):
202 if i == 0 :
203 input_size = n_ins_mlp
204 else:
205 input_size = mlp_hidden_layers_sizes[i-1]
206
207 if i == 0 :
208 if len( self.layers ) == 0 :
209 layer_input=self.x
210 else :
211 layer_input = self.layers[-1].output.flatten(2)
212 else:
213 layer_input = self.layers[-1].output
214
215 layer = SigmoidalLayer(rng, layer_input, input_size,
216 mlp_hidden_layers_sizes[i] )
217
218 self.layers += [layer]
219 self.params += layer.params
220
221 print 'MLP layer', str(i+1), 'created'
222
223 self.logLayer = LogisticRegression(input=self.layers[-1].output, \
224 n_in=mlp_hidden_layers_sizes[-1], n_out=n_out)
225
226
227 self.params += self.logLayer.params
228 self.all_params = self.params
229 cost = self.logLayer.negative_log_likelihood(self.y)
230
231 gparams = T.grad(cost, self.params)
232
233 updates = {}
234 for param,gparam in zip(self.params, gparams):
235 updates[param] = param - gparam*finetune_lr
236
237 self.finetune = theano.function([self.x, self.y], cost, updates = updates)
238
239 self.errors = self.logLayer.errors(self.y)
240
241
242