Mercurial > ift6266
comparison deep/convolutional_dae/scdae.py @ 314:2937f2a421aa
Print the error sometimes in the pretrain loop.
author | Arnaud Bergeron <abergeron@gmail.com> |
---|---|
date | Thu, 01 Apr 2010 14:28:50 -0400 |
parents | ef28cbb5f464 |
children | 6143b23e2610 |
comparison
equal
deleted
inserted
replaced
311:8b31280129a9 | 314:2937f2a421aa |
---|---|
155 def create_series(): | 155 def create_series(): |
156 import tables | 156 import tables |
157 | 157 |
158 series = {} | 158 series = {} |
159 h5f = tables.openFile('series.h5', 'w') | 159 h5f = tables.openFile('series.h5', 'w') |
160 class PrintWrap(object): | |
161 def __init__(self, series): | |
162 self.series = series | |
163 | |
164 def append(self, idx, value): | |
165 print idx, value | |
166 self.series.append(idx, value) | |
160 | 167 |
161 series['recons_error'] = AccumulatorSeriesWrapper( | 168 series['recons_error'] = AccumulatorSeriesWrapper( |
162 base_series=ErrorSeries(error_name='reconstruction_error', | 169 base_series=PrintWrap(ErrorSeries(error_name='reconstruction_error', |
163 table_name='reconstruction_error', | 170 table_name='reconstruction_error', |
164 hdf5_file=h5f, | 171 hdf5_file=h5f, |
165 index_names=('layer', 'epoch'), | 172 index_names=('layer', 'epoch'), |
166 title="Reconstruction error (mse)"), | 173 title="Reconstruction error (mse)")), |
167 reduce_every=100) | 174 reduce_every=100) |
168 | 175 |
169 series['train_error'] = AccumulatorSeriesWrapper( | 176 series['train_error'] = AccumulatorSeriesWrapper( |
170 base_series=ErrorSeries(error_name='training_error', | 177 base_series=ErrorSeries(error_name='training_error', |
171 table_name='training_error', | 178 table_name='training_error', |
201 dset = datasets.nist_digits(1000) | 208 dset = datasets.nist_digits(1000) |
202 | 209 |
203 pretrain_funcs, trainf, evalf, net = build_funcs( | 210 pretrain_funcs, trainf, evalf, net = build_funcs( |
204 img_size = (32, 32), | 211 img_size = (32, 32), |
205 batch_size=batch_size, filter_sizes=[(5,5), (3,3)], | 212 batch_size=batch_size, filter_sizes=[(5,5), (3,3)], |
206 num_filters=[12, 4], subs=[(2,2), (2,2)], noise=[0.2, 0.2], | 213 num_filters=[20, 4], subs=[(2,2), (2,2)], noise=[0.2, 0.2], |
207 mlp_sizes=[500], out_size=10, dtype=numpy.float32, | 214 mlp_sizes=[500], out_size=10, dtype=numpy.float32, |
208 pretrain_lr=0.001, train_lr=0.1) | 215 pretrain_lr=0.001, train_lr=0.1) |
209 | 216 |
210 t_it = repeat_itf(dset.train, batch_size) | 217 t_it = repeat_itf(dset.train, batch_size) |
211 pretrain_fs, train, valid, test = massage_funcs( | 218 pretrain_fs, train, valid, test = massage_funcs( |