comparison deep/stacked_dae/stacked_dae.py @ 167:1f5937e9e530

More moves - transformations into data_generation, added "deep" folder
author Dumitru Erhan <dumitru.erhan@gmail.com>
date Fri, 26 Feb 2010 14:15:38 -0500
parents scripts/stacked_dae/stacked_dae.py@7d8366fb90bf
children b9ea8e2d071a
comparison
equal deleted inserted replaced
166:17ae5a1a4dd1 167:1f5937e9e530
1 #!/usr/bin/python
2 # coding: utf-8
3
4 import numpy
5 import theano
6 import time
7 import theano.tensor as T
8 from theano.tensor.shared_randomstreams import RandomStreams
9 import copy
10
11 from utils import update_locals
12
13 class LogisticRegression(object):
14 def __init__(self, input, n_in, n_out):
15 # initialize with 0 the weights W as a matrix of shape (n_in, n_out)
16 self.W = theano.shared( value=numpy.zeros((n_in,n_out),
17 dtype = theano.config.floatX) )
18 # initialize the baises b as a vector of n_out 0s
19 self.b = theano.shared( value=numpy.zeros((n_out,),
20 dtype = theano.config.floatX) )
21 # compute vector of class-membership probabilities in symbolic form
22 self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b)
23
24 # compute prediction as class whose probability is maximal in
25 # symbolic form
26 self.y_pred=T.argmax(self.p_y_given_x, axis=1)
27
28 # list of parameters for this layer
29 self.params = [self.W, self.b]
30
31 def negative_log_likelihood(self, y):
32 return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y])
33
34 def errors(self, y):
35 # check if y has same dimension of y_pred
36 if y.ndim != self.y_pred.ndim:
37 raise TypeError('y should have the same shape as self.y_pred',
38 ('y', target.type, 'y_pred', self.y_pred.type))
39
40 # check if y is of the correct datatype
41 if y.dtype.startswith('int'):
42 # the T.neq operator returns a vector of 0s and 1s, where 1
43 # represents a mistake in prediction
44 return T.mean(T.neq(self.y_pred, y))
45 else:
46 raise NotImplementedError()
47
48
49 class SigmoidalLayer(object):
50 def __init__(self, rng, input, n_in, n_out):
51 self.input = input
52
53 W_values = numpy.asarray( rng.uniform( \
54 low = -numpy.sqrt(6./(n_in+n_out)), \
55 high = numpy.sqrt(6./(n_in+n_out)), \
56 size = (n_in, n_out)), dtype = theano.config.floatX)
57 self.W = theano.shared(value = W_values)
58
59 b_values = numpy.zeros((n_out,), dtype= theano.config.floatX)
60 self.b = theano.shared(value= b_values)
61
62 self.output = T.nnet.sigmoid(T.dot(input, self.W) + self.b)
63 self.params = [self.W, self.b]
64
65
66
67 class dA(object):
68 def __init__(self, n_visible= 784, n_hidden= 500, corruption_level = 0.1,\
69 input = None, shared_W = None, shared_b = None):
70 self.n_visible = n_visible
71 self.n_hidden = n_hidden
72
73 # create a Theano random generator that gives symbolic random values
74 theano_rng = RandomStreams()
75
76 if shared_W != None and shared_b != None :
77 self.W = shared_W
78 self.b = shared_b
79 else:
80 # initial values for weights and biases
81 # note : W' was written as `W_prime` and b' as `b_prime`
82
83 # W is initialized with `initial_W` which is uniformely sampled
84 # from -6./sqrt(n_visible+n_hidden) and 6./sqrt(n_hidden+n_visible)
85 # the output of uniform if converted using asarray to dtype
86 # theano.config.floatX so that the code is runable on GPU
87 initial_W = numpy.asarray( numpy.random.uniform( \
88 low = -numpy.sqrt(6./(n_hidden+n_visible)), \
89 high = numpy.sqrt(6./(n_hidden+n_visible)), \
90 size = (n_visible, n_hidden)), dtype = theano.config.floatX)
91 initial_b = numpy.zeros(n_hidden, dtype = theano.config.floatX)
92
93
94 # theano shared variables for weights and biases
95 self.W = theano.shared(value = initial_W, name = "W")
96 self.b = theano.shared(value = initial_b, name = "b")
97
98
99 initial_b_prime= numpy.zeros(n_visible)
100 # tied weights, therefore W_prime is W transpose
101 self.W_prime = self.W.T
102 self.b_prime = theano.shared(value = initial_b_prime, name = "b'")
103
104 # if no input is given, generate a variable representing the input
105 if input == None :
106 # we use a matrix because we expect a minibatch of several examples,
107 # each example being a row
108 self.x = T.dmatrix(name = 'input')
109 else:
110 self.x = input
111 # Equation (1)
112 # keep 90% of the inputs the same and zero-out randomly selected subset of 10% of the inputs
113 # note : first argument of theano.rng.binomial is the shape(size) of
114 # random numbers that it should produce
115 # second argument is the number of trials
116 # third argument is the probability of success of any trial
117 #
118 # this will produce an array of 0s and 1s where 1 has a
119 # probability of 1 - ``corruption_level`` and 0 with
120 # ``corruption_level``
121 self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level) * self.x
122 # Equation (2)
123 # note : y is stored as an attribute of the class so that it can be
124 # used later when stacking dAs.
125 self.y = T.nnet.sigmoid(T.dot(self.tilde_x, self.W ) + self.b)
126 # Equation (3)
127 self.z = T.nnet.sigmoid(T.dot(self.y, self.W_prime) + self.b_prime)
128 # Equation (4)
129 # note : we sum over the size of a datapoint; if we are using minibatches,
130 # L will be a vector, with one entry per example in minibatch
131 self.L = - T.sum( self.x*T.log(self.z) + (1-self.x)*T.log(1-self.z), axis=1 )
132 # note : L is now a vector, where each element is the cross-entropy cost
133 # of the reconstruction of the corresponding example of the
134 # minibatch. We need to compute the average of all these to get
135 # the cost of the minibatch
136 self.cost = T.mean(self.L)
137
138 self.params = [ self.W, self.b, self.b_prime ]
139
140
141
142
143 class SdA(object):
144 def __init__(self, train_set_x, train_set_y, batch_size, n_ins,
145 hidden_layers_sizes, n_outs,
146 corruption_levels, rng, pretrain_lr, finetune_lr, input_divider=1.0):
147 update_locals(self, locals())
148
149 self.layers = []
150 self.pretrain_functions = []
151 self.params = []
152 self.n_layers = len(hidden_layers_sizes)
153
154 self.input_divider = numpy.asarray(input_divider, dtype=theano.config.floatX)
155
156 if len(hidden_layers_sizes) < 1 :
157 raiseException (' You must have at least one hidden layer ')
158
159
160 # allocate symbolic variables for the data
161 index = T.lscalar() # index to a [mini]batch
162 self.x = T.matrix('x') # the data is presented as rasterized images
163 self.y = T.ivector('y') # the labels are presented as 1D vector of
164 # [int] labels
165
166 for i in xrange( self.n_layers ):
167 # construct the sigmoidal layer
168
169 # the size of the input is either the number of hidden units of
170 # the layer below or the input size if we are on the first layer
171 if i == 0 :
172 input_size = n_ins
173 else:
174 input_size = hidden_layers_sizes[i-1]
175
176 # the input to this layer is either the activation of the hidden
177 # layer below or the input of the SdA if you are on the first
178 # layer
179 if i == 0 :
180 layer_input = self.x
181 else:
182 layer_input = self.layers[-1].output
183
184 layer = SigmoidalLayer(rng, layer_input, input_size,
185 hidden_layers_sizes[i] )
186 # add the layer to the
187 self.layers += [layer]
188 self.params += layer.params
189
190 # Construct a denoising autoencoder that shared weights with this
191 # layer
192 dA_layer = dA(input_size, hidden_layers_sizes[i], \
193 corruption_level = corruption_levels[0],\
194 input = layer_input, \
195 shared_W = layer.W, shared_b = layer.b)
196
197 # Construct a function that trains this dA
198 # compute gradients of layer parameters
199 gparams = T.grad(dA_layer.cost, dA_layer.params)
200 # compute the list of updates
201 updates = {}
202 for param, gparam in zip(dA_layer.params, gparams):
203 updates[param] = param - gparam * pretrain_lr
204
205 # create a function that trains the dA
206 update_fn = theano.function([index], dA_layer.cost, \
207 updates = updates,
208 givens = {
209 self.x : train_set_x[index*batch_size:(index+1)*batch_size] / self.input_divider})
210 # collect this function into a list
211 self.pretrain_functions += [update_fn]
212
213
214 # We now need to add a logistic layer on top of the MLP
215 self.logLayer = LogisticRegression(\
216 input = self.layers[-1].output,\
217 n_in = hidden_layers_sizes[-1], n_out = n_outs)
218
219 self.params += self.logLayer.params
220 # construct a function that implements one step of finetunining
221
222 # compute the cost, defined as the negative log likelihood
223 cost = self.logLayer.negative_log_likelihood(self.y)
224 # compute the gradients with respect to the model parameters
225 gparams = T.grad(cost, self.params)
226 # compute list of updates
227 updates = {}
228 for param,gparam in zip(self.params, gparams):
229 updates[param] = param - gparam*finetune_lr
230
231 self.finetune = theano.function([index], cost,
232 updates = updates,
233 givens = {
234 self.x : train_set_x[index*batch_size:(index+1)*batch_size]/self.input_divider,
235 self.y : train_set_y[index*batch_size:(index+1)*batch_size]} )
236
237 # symbolic variable that points to the number of errors made on the
238 # minibatch given by self.x and self.y
239
240 self.errors = self.logLayer.errors(self.y)
241
242 @classmethod
243 def copy_reusing_lower_layers(cls, obj, num_hidden_layers, new_finetuning_lr=None):
244 assert(num_hidden_layers <= obj.n_layers)
245
246 if not new_finetuning_lr:
247 new_finetuning_lr = obj.finetune_lr
248
249 new_sda = cls(train_set_x= obj.train_set_x, \
250 train_set_y = obj.train_set_y,\
251 batch_size = obj.batch_size, \
252 n_ins= obj.n_ins, \
253 hidden_layers_sizes = obj.hidden_layers_sizes[:num_hidden_layers], \
254 n_outs = obj.n_outs, \
255 corruption_levels = obj.corruption_levels[:num_hidden_layers],\
256 rng = obj.rng,\
257 pretrain_lr = obj.pretrain_lr, \
258 finetune_lr = new_finetuning_lr, \
259 input_divider = obj.input_divider )
260
261 # new_sda.layers contains only the hidden layers actually
262 for i, layer in enumerate(new_sda.layers):
263 original_layer = obj.layers[i]
264 for p1,p2 in zip(layer.params, original_layer.params):
265 p1.value = p2.value.copy()
266
267 return new_sda
268
269 def get_params_copy(self):
270 return copy.deepcopy(self.params)
271
272 def set_params_from_copy(self, copy):
273 # We don't want to replace the var, as the functions have pointers in there
274 # We only want to replace values.
275 for i, p in enumerate(self.params):
276 p.value = copy[i].value
277
278 def get_params_means(self):
279 s = []
280 for p in self.params:
281 s.append(numpy.mean(p.value))
282 return s
283
284 if __name__ == '__main__':
285 import sys
286 args = sys.argv[1:]
287