Mercurial > ift6266
comparison deep/stacked_dae/sgd_optimization.py @ 167:1f5937e9e530
More moves - transformations into data_generation, added "deep" folder
author | Dumitru Erhan <dumitru.erhan@gmail.com> |
---|---|
date | Fri, 26 Feb 2010 14:15:38 -0500 |
parents | scripts/stacked_dae/sgd_optimization.py@7d8366fb90bf |
children | b9ea8e2d071a |
comparison
equal
deleted
inserted
replaced
166:17ae5a1a4dd1 | 167:1f5937e9e530 |
---|---|
1 #!/usr/bin/python | |
2 # coding: utf-8 | |
3 | |
4 # Generic SdA optimization loop, adapted from the deeplearning.net tutorial | |
5 | |
6 import numpy | |
7 import theano | |
8 import time | |
9 import theano.tensor as T | |
10 import copy | |
11 import sys | |
12 | |
13 from jobman import DD | |
14 import jobman, jobman.sql | |
15 | |
16 from stacked_dae import SdA | |
17 | |
18 def shared_dataset(data_xy): | |
19 data_x, data_y = data_xy | |
20 #shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX)) | |
21 #shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX)) | |
22 #shared_y = T.cast(shared_y, 'int32') | |
23 shared_x = theano.shared(data_x) | |
24 shared_y = theano.shared(data_y) | |
25 return shared_x, shared_y | |
26 | |
27 class SdaSgdOptimizer: | |
28 def __init__(self, dataset, hyperparameters, n_ins, n_outs, input_divider=1.0,\ | |
29 job_tree=False, results_db=None,\ | |
30 experiment="",\ | |
31 num_hidden_layers_to_try=[1,2,3], \ | |
32 finetuning_lr_to_try=[0.1, 0.01, 0.001, 0.0001, 0.00001]): | |
33 | |
34 self.dataset = dataset | |
35 self.hp = copy.copy(hyperparameters) | |
36 self.n_ins = n_ins | |
37 self.n_outs = n_outs | |
38 self.input_divider = numpy.asarray(input_divider, dtype=theano.config.floatX) | |
39 | |
40 self.job_tree = job_tree | |
41 self.results_db = results_db | |
42 self.experiment = experiment | |
43 if self.job_tree: | |
44 assert(not results_db is None) | |
45 # these hp should not be there, so we insert default values | |
46 # we use 3 hidden layers as we'll iterate through 1,2,3 | |
47 self.hp.finetuning_lr = 0.1 # dummy value, will be replaced anyway | |
48 cl = self.hp.corruption_levels | |
49 nh = self.hp.hidden_layers_sizes | |
50 self.hp.corruption_levels = [cl,cl,cl] | |
51 self.hp.hidden_layers_sizes = [nh,nh,nh] | |
52 | |
53 self.num_hidden_layers_to_try = num_hidden_layers_to_try | |
54 self.finetuning_lr_to_try = finetuning_lr_to_try | |
55 | |
56 self.printout_frequency = 1000 | |
57 | |
58 self.rng = numpy.random.RandomState(1234) | |
59 | |
60 self.init_datasets() | |
61 self.init_classifier() | |
62 | |
63 def init_datasets(self): | |
64 print "init_datasets" | |
65 train_set, valid_set, test_set = self.dataset | |
66 self.test_set_x, self.test_set_y = shared_dataset(test_set) | |
67 self.valid_set_x, self.valid_set_y = shared_dataset(valid_set) | |
68 self.train_set_x, self.train_set_y = shared_dataset(train_set) | |
69 | |
70 # compute number of minibatches for training, validation and testing | |
71 self.n_train_batches = self.train_set_x.value.shape[0] / self.hp.minibatch_size | |
72 self.n_valid_batches = self.valid_set_x.value.shape[0] / self.hp.minibatch_size | |
73 self.n_test_batches = self.test_set_x.value.shape[0] / self.hp.minibatch_size | |
74 | |
75 def init_classifier(self): | |
76 print "Constructing classifier" | |
77 # construct the stacked denoising autoencoder class | |
78 self.classifier = SdA( \ | |
79 train_set_x= self.train_set_x, \ | |
80 train_set_y = self.train_set_y,\ | |
81 batch_size = self.hp.minibatch_size, \ | |
82 n_ins= self.n_ins, \ | |
83 hidden_layers_sizes = self.hp.hidden_layers_sizes, \ | |
84 n_outs = self.n_outs, \ | |
85 corruption_levels = self.hp.corruption_levels,\ | |
86 rng = self.rng,\ | |
87 pretrain_lr = self.hp.pretraining_lr, \ | |
88 finetune_lr = self.hp.finetuning_lr,\ | |
89 input_divider = self.input_divider ) | |
90 | |
91 def train(self): | |
92 self.pretrain() | |
93 if not self.job_tree: | |
94 # if job_tree is True, finetuning was already performed | |
95 self.finetune() | |
96 | |
97 def pretrain(self): | |
98 print "STARTING PRETRAINING" | |
99 | |
100 printout_acc = 0.0 | |
101 last_error = 0.0 | |
102 | |
103 start_time = time.clock() | |
104 ## Pre-train layer-wise | |
105 for i in xrange(self.classifier.n_layers): | |
106 # go through pretraining epochs | |
107 for epoch in xrange(self.hp.pretraining_epochs_per_layer): | |
108 # go through the training set | |
109 for batch_index in xrange(self.n_train_batches): | |
110 c = self.classifier.pretrain_functions[i](batch_index) | |
111 | |
112 printout_acc += c / self.printout_frequency | |
113 if (batch_index+1) % self.printout_frequency == 0: | |
114 print batch_index, "reconstruction cost avg=", printout_acc | |
115 last_error = printout_acc | |
116 printout_acc = 0.0 | |
117 | |
118 print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c | |
119 | |
120 self.job_splitter(i+1, time.clock()-start_time, last_error) | |
121 | |
122 end_time = time.clock() | |
123 | |
124 print ('Pretraining took %f minutes' %((end_time-start_time)/60.)) | |
125 | |
126 # Save time by reusing intermediate results | |
127 def job_splitter(self, current_pretraining_layer, pretraining_time, last_error): | |
128 | |
129 state_copy = None | |
130 original_classifier = None | |
131 | |
132 if self.job_tree and current_pretraining_layer in self.num_hidden_layers_to_try: | |
133 for lr in self.finetuning_lr_to_try: | |
134 sys.stdout.flush() | |
135 sys.stderr.flush() | |
136 | |
137 state_copy = copy.copy(self.hp) | |
138 | |
139 self.hp.update({'num_hidden_layers':current_pretraining_layer, \ | |
140 'finetuning_lr':lr,\ | |
141 'pretraining_time':pretraining_time,\ | |
142 'last_reconstruction_error':last_error}) | |
143 | |
144 original_classifier = self.classifier | |
145 print "ORIGINAL CLASSIFIER MEANS",original_classifier.get_params_means() | |
146 self.classifier = SdA.copy_reusing_lower_layers(original_classifier, current_pretraining_layer, new_finetuning_lr=lr) | |
147 | |
148 self.finetune() | |
149 | |
150 self.insert_finished_job() | |
151 | |
152 print "NEW CLASSIFIER MEANS AFTERWARDS",self.classifier.get_params_means() | |
153 print "ORIGINAL CLASSIFIER MEANS AFTERWARDS",original_classifier.get_params_means() | |
154 self.classifier = original_classifier | |
155 self.hp = state_copy | |
156 | |
157 def insert_finished_job(self): | |
158 job = copy.copy(self.hp) | |
159 job[jobman.sql.STATUS] = jobman.sql.DONE | |
160 job[jobman.sql.EXPERIMENT] = self.experiment | |
161 | |
162 # don,t try to store arrays in db | |
163 job['hidden_layers_sizes'] = job.hidden_layers_sizes[0] | |
164 job['corruption_levels'] = job.corruption_levels[0] | |
165 | |
166 print "Will insert finished job", job | |
167 jobman.sql.insert_dict(jobman.flatten(job), self.results_db) | |
168 | |
169 def finetune(self): | |
170 print "STARTING FINETUNING" | |
171 | |
172 index = T.lscalar() # index to a [mini]batch | |
173 minibatch_size = self.hp.minibatch_size | |
174 | |
175 # create a function to compute the mistakes that are made by the model | |
176 # on the validation set, or testing set | |
177 test_model = theano.function([index], self.classifier.errors, | |
178 givens = { | |
179 self.classifier.x: self.test_set_x[index*minibatch_size:(index+1)*minibatch_size] / self.input_divider, | |
180 self.classifier.y: self.test_set_y[index*minibatch_size:(index+1)*minibatch_size]}) | |
181 | |
182 validate_model = theano.function([index], self.classifier.errors, | |
183 givens = { | |
184 self.classifier.x: self.valid_set_x[index*minibatch_size:(index+1)*minibatch_size] / self.input_divider, | |
185 self.classifier.y: self.valid_set_y[index*minibatch_size:(index+1)*minibatch_size]}) | |
186 | |
187 | |
188 # early-stopping parameters | |
189 patience = 10000 # look as this many examples regardless | |
190 patience_increase = 2. # wait this much longer when a new best is | |
191 # found | |
192 improvement_threshold = 0.995 # a relative improvement of this much is | |
193 # considered significant | |
194 validation_frequency = min(self.n_train_batches, patience/2) | |
195 # go through this many | |
196 # minibatche before checking the network | |
197 # on the validation set; in this case we | |
198 # check every epoch | |
199 | |
200 best_params = None | |
201 best_validation_loss = float('inf') | |
202 test_score = 0. | |
203 start_time = time.clock() | |
204 | |
205 done_looping = False | |
206 epoch = 0 | |
207 | |
208 printout_acc = 0.0 | |
209 | |
210 if not self.hp.has_key('max_finetuning_epochs'): | |
211 self.hp.max_finetuning_epochs = 1000 | |
212 | |
213 while (epoch < self.hp.max_finetuning_epochs) and (not done_looping): | |
214 epoch = epoch + 1 | |
215 for minibatch_index in xrange(self.n_train_batches): | |
216 | |
217 cost_ij = self.classifier.finetune(minibatch_index) | |
218 iter = epoch * self.n_train_batches + minibatch_index | |
219 | |
220 printout_acc += cost_ij / float(self.printout_frequency * minibatch_size) | |
221 if (iter+1) % self.printout_frequency == 0: | |
222 print iter, "cost avg=", printout_acc | |
223 printout_acc = 0.0 | |
224 | |
225 if (iter+1) % validation_frequency == 0: | |
226 | |
227 validation_losses = [validate_model(i) for i in xrange(self.n_valid_batches)] | |
228 this_validation_loss = numpy.mean(validation_losses) | |
229 print('epoch %i, minibatch %i/%i, validation error %f %%' % \ | |
230 (epoch, minibatch_index+1, self.n_train_batches, \ | |
231 this_validation_loss*100.)) | |
232 | |
233 | |
234 # if we got the best validation score until now | |
235 if this_validation_loss < best_validation_loss: | |
236 | |
237 #improve patience if loss improvement is good enough | |
238 if this_validation_loss < best_validation_loss * \ | |
239 improvement_threshold : | |
240 patience = max(patience, iter * patience_increase) | |
241 | |
242 # save best validation score and iteration number | |
243 best_validation_loss = this_validation_loss | |
244 best_iter = iter | |
245 | |
246 # test it on the test set | |
247 test_losses = [test_model(i) for i in xrange(self.n_test_batches)] | |
248 test_score = numpy.mean(test_losses) | |
249 print((' epoch %i, minibatch %i/%i, test error of best ' | |
250 'model %f %%') % | |
251 (epoch, minibatch_index+1, self.n_train_batches, | |
252 test_score*100.)) | |
253 | |
254 | |
255 if patience <= iter : | |
256 done_looping = True | |
257 break | |
258 | |
259 end_time = time.clock() | |
260 self.hp.update({'finetuning_time':end_time-start_time,\ | |
261 'best_validation_error':best_validation_loss,\ | |
262 'test_score':test_score, | |
263 'num_finetuning_epochs':epoch}) | |
264 print(('Optimization complete with best validation score of %f %%,' | |
265 'with test performance %f %%') % | |
266 (best_validation_loss * 100., test_score*100.)) | |
267 print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.)) | |
268 | |
269 | |
270 |