comparison deep/stacked_dae/v_sylvain/nist_sda_retrieve.py @ 317:067e747fd9c0

Ajout de noms differents pour les series produites pour differents choix de pretrain
author SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
date Thu, 01 Apr 2010 20:09:14 -0400
parents 60e82846a10d
children 71ffe2c9bfad
comparison
equal deleted inserted replaced
316:60e82846a10d 317:067e747fd9c0
53 53
54 n_ins = 32*32 54 n_ins = 32*32
55 n_outs = 62 # 10 digits, 26*2 (lower, capitals) 55 n_outs = 62 # 10 digits, 26*2 (lower, capitals)
56 56
57 examples_per_epoch = NIST_ALL_TRAIN_SIZE 57 examples_per_epoch = NIST_ALL_TRAIN_SIZE
58 58 #To be sure variables will not be only in the if statement
59 series = create_series(state.num_hidden_layers) 59 PATH = ''
60 nom_reptrain = ''
61 nom_serie = ""
62 if state['pretrain_choice'] == 0:
63 PATH=PATH_NIST
64 nom_pretrain='NIST'
65 nom_serie="series_NIST.h5"
66 elif state['pretrain_choice'] == 1:
67 PATH=PATH_P07
68 nom_pretrain='P07'
69 nom_serie="series_P07.h5"
70
71 series = create_series(state.num_hidden_layers,nom_serie)
60 72
61 print "Creating optimizer with state, ", state 73 print "Creating optimizer with state, ", state
62 74
63 optimizer = SdaSgdOptimizer(dataset=datasets.nist_all(), 75 optimizer = SdaSgdOptimizer(dataset=datasets.nist_all(),
64 hyperparameters=state, \ 76 hyperparameters=state, \
81 ## sys.exit("The code does not support this much pretraining epoch (99 max with P07).\n"+ 93 ## sys.exit("The code does not support this much pretraining epoch (99 max with P07).\n"+
82 ## "You have to correct the code (and be patient, P07 is huge !!)\n"+ 94 ## "You have to correct the code (and be patient, P07 is huge !!)\n"+
83 ## "or reduce the number of pretraining epoch to run the code (better idea).\n") 95 ## "or reduce the number of pretraining epoch to run the code (better idea).\n")
84 ## print('\n\tpretraining with P07') 96 ## print('\n\tpretraining with P07')
85 ## optimizer.pretrain(datasets.nist_P07(min_file=0,max_file=nb_file)) 97 ## optimizer.pretrain(datasets.nist_P07(min_file=0,max_file=nb_file))
86 if state['pretrain_choice'] == 0:
87 PATH=PATH_NIST
88 nom_pretrain='NIST'
89 elif state['pretrain_choice'] == 1:
90 PATH=PATH_P07
91 nom_pretrain='P07'
92 98
93 print ('Retrieve pre-train done earlier ( '+nom_pretrain+' )') 99 print ('Retrieve pre-train done earlier ( '+nom_pretrain+' )')
94 100
95 101
96 102
166 172
167 return channel.COMPLETE 173 return channel.COMPLETE
168 174
169 # These Series objects are used to save various statistics 175 # These Series objects are used to save various statistics
170 # during the training. 176 # during the training.
171 def create_series(num_hidden_layers): 177 def create_series(num_hidden_layers, nom_serie):
172 178
173 # Replace series we don't want to save with DummySeries, e.g. 179 # Replace series we don't want to save with DummySeries, e.g.
174 # series['training_error'] = DummySeries() 180 # series['training_error'] = DummySeries()
175 181
176 series = {} 182 series = {}
177 183
178 basedir = os.getcwd() 184 basedir = os.getcwd()
179 185
180 h5f = tables.openFile(os.path.join(basedir, "series.h5"), "w") 186 h5f = tables.openFile(os.path.join(basedir, nom_serie), "w")
181 187
182 # reconstruction 188 # reconstruction
183 reconstruction_base = \ 189 reconstruction_base = \
184 ErrorSeries(error_name="reconstruction_error", 190 ErrorSeries(error_name="reconstruction_error",
185 table_name="reconstruction_error", 191 table_name="reconstruction_error",