Mercurial > ift6266
comparison deep/convolutional_dae/run_exp.py @ 380:0473b799d449
merge
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Mon, 26 Apr 2010 14:56:34 -0400 |
parents | 01445a75c702 |
children |
comparison
equal
deleted
inserted
replaced
379:a21a174c1c18 | 380:0473b799d449 |
---|---|
1 from ift6266.deep.convolutional_dae.scdae import * | 1 from ift6266.deep.convolutional_dae.scdae import * |
2 | 2 |
3 class dumb(object): | 3 class dumb(object): |
4 COMPLETE = None | |
4 def save(self): | 5 def save(self): |
5 pass | 6 pass |
6 | 7 |
7 def go(state, channel): | 8 def go(state, channel): |
8 from ift6266 import datasets | 9 from ift6266 import datasets |
16 | 17 |
17 pylearn.version.record_versions(state, [theano, ift6266, pylearn]) | 18 pylearn.version.record_versions(state, [theano, ift6266, pylearn]) |
18 # TODO: maybe record pynnet version? | 19 # TODO: maybe record pynnet version? |
19 channel.save() | 20 channel.save() |
20 | 21 |
21 dset = datasets.nist_all() | 22 dset = datasets.nist_P07() |
22 | 23 |
23 nfilts = [] | 24 nfilts = [] |
25 fsizes = [] | |
24 if state.nfilts1 != 0: | 26 if state.nfilts1 != 0: |
25 nfilts.append(state.nfilts1) | 27 nfilts.append(state.nfilts1) |
28 fsizes.append((5,5)) | |
26 if state.nfilts2 != 0: | 29 if state.nfilts2 != 0: |
27 nfilts.append(state.nfilts2) | 30 nfilts.append(state.nfilts2) |
31 fsizes.append((3,3)) | |
28 if state.nfilts3 != 0: | 32 if state.nfilts3 != 0: |
29 nfilts.append(state.nfilts3) | 33 nfilts.append(state.nfilts3) |
34 fsizes.append((3,3)) | |
30 if state.nfilts4 != 0: | 35 if state.nfilts4 != 0: |
31 nfilts.append(state.nfilts4) | 36 nfilts.append(state.nfilts4) |
37 fsizes.append((2,2)) | |
32 | 38 |
33 fsizes = [(5,5)]*len(nfilts) | |
34 subs = [(2,2)]*len(nfilts) | 39 subs = [(2,2)]*len(nfilts) |
35 noise = [state.noise]*len(nfilts) | 40 noise = [state.noise]*len(nfilts) |
36 | 41 |
37 pretrain_funcs, trainf, evalf, net = build_funcs( | 42 pretrain_funcs, trainf, evalf, net = build_funcs( |
38 img_size=(32, 32), | 43 img_size=(32, 32), |
59 do_pretrain(pretrain_fs, state.pretrain_rounds, series['recons_error']) | 64 do_pretrain(pretrain_fs, state.pretrain_rounds, series['recons_error']) |
60 | 65 |
61 print "training ..." | 66 print "training ..." |
62 sys.stdout.flush() | 67 sys.stdout.flush() |
63 best_valid, test_score = sgd_opt(train, valid, test, | 68 best_valid, test_score = sgd_opt(train, valid, test, |
64 training_epochs=1000000, patience=2500, | 69 training_epochs=800000, patience=2000, |
65 patience_increase=2., | 70 patience_increase=2., |
66 improvement_threshold=0.995, | 71 improvement_threshold=0.995, |
67 validation_frequency=500, | 72 validation_frequency=500, |
68 series=series, net=net) | 73 series=series, net=net) |
69 state.best_valid = best_valid | 74 state.best_valid = best_valid |