0
|
1 """
|
|
2 This tutorial introduces logistic regression using Theano and stochastic
|
|
3 gradient descent.
|
|
4
|
|
5 Logistic regression is a probabilistic, linear classifier. It is parametrized
|
|
6 by a weight matrix :math:`W` and a bias vector :math:`b`. Classification is
|
|
7 done by projecting data points onto a set of hyperplanes, the distance to
|
|
8 which is used to determine a class membership probability.
|
|
9
|
|
10 Mathematically, this can be written as:
|
|
11
|
|
12 .. math::
|
|
13 P(Y=i|x, W,b) &= softmax_i(W x + b) \\
|
|
14 &= \frac {e^{W_i x + b_i}} {\sum_j e^{W_j x + b_j}}
|
|
15
|
|
16
|
|
17 The output of the model or prediction is then done by taking the argmax of
|
|
18 the vector whose i'th element is P(Y=i|x).
|
|
19
|
|
20 .. math::
|
|
21
|
|
22 y_{pred} = argmax_i P(Y=i|x,W,b)
|
|
23
|
|
24
|
|
25 This tutorial presents a stochastic gradient descent optimization method
|
|
26 suitable for large datasets, and a conjugate gradient optimization method
|
|
27 that is suitable for smaller datasets.
|
|
28
|
|
29
|
|
30 References:
|
|
31
|
|
32 - textbooks: "Pattern Recognition and Machine Learning" -
|
|
33 Christopher M. Bishop, section 4.3.2
|
|
34
|
|
35
|
|
36 """
|
|
37 __docformat__ = 'restructedtext en'
|
|
38
|
|
39
|
|
40 import numpy, cPickle, gzip
|
|
41
|
|
42 import time
|
|
43
|
|
44 import theano
|
|
45 import theano.tensor as T
|
|
46
|
|
47 import theano.tensor.nnet
|
|
48
|
|
49
|
|
50 class LogisticRegression(object):
|
|
51 """Multi-class Logistic Regression Class
|
|
52
|
|
53 The logistic regression is fully described by a weight matrix :math:`W`
|
|
54 and bias vector :math:`b`. Classification is done by projecting data
|
|
55 points onto a set of hyperplanes, the distance to which is used to
|
|
56 determine a class membership probability.
|
|
57 """
|
|
58
|
|
59
|
|
60
|
|
61
|
|
62 def __init__(self, input, n_in, n_out):
|
|
63 """ Initialize the parameters of the logistic regression
|
|
64
|
|
65 :param input: symbolic variable that describes the input of the
|
|
66 architecture (one minibatch)
|
|
67
|
|
68 :param n_in: number of input units, the dimension of the space in
|
|
69 which the datapoints lie
|
|
70
|
|
71 :param n_out: number of output units, the dimension of the space in
|
|
72 which the labels lie
|
|
73
|
|
74 """
|
|
75
|
|
76 # initialize with 0 the weights W as a matrix of shape (n_in, n_out)
|
|
77 self.W = theano.shared( value=numpy.zeros((n_in,n_out),
|
|
78 dtype = theano.config.floatX) )
|
|
79 # initialize the baises b as a vector of n_out 0s
|
|
80 self.b = theano.shared( value=numpy.zeros((n_out,),
|
|
81 dtype = theano.config.floatX) )
|
|
82
|
|
83
|
|
84 # compute vector of class-membership probabilities in symbolic form
|
|
85 self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b)
|
|
86
|
|
87 # compute prediction as class whose probability is maximal in
|
|
88 # symbolic form
|
|
89 self.y_pred=T.argmax(self.p_y_given_x, axis=1)
|
|
90
|
|
91
|
|
92
|
|
93
|
|
94
|
|
95 def negative_log_likelihood(self, y):
|
|
96 """Return the mean of the negative log-likelihood of the prediction
|
|
97 of this model under a given target distribution.
|
|
98
|
|
99 .. math::
|
|
100
|
|
101 \frac{1}{|\mathcal{D}|} \mathcal{L} (\theta=\{W,b\}, \mathcal{D}) =
|
|
102 \frac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|} \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\
|
|
103 \ell (\theta=\{W,b\}, \mathcal{D})
|
|
104
|
|
105
|
|
106 :param y: corresponds to a vector that gives for each example the
|
|
107 :correct label
|
|
108
|
|
109 Note: we use the mean instead of the sum so that
|
|
110 the learning rate is less dependent on the batch size
|
|
111 """
|
|
112 return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y])
|
|
113
|
|
114
|
|
115
|
|
116
|
|
117
|
|
118 def errors(self, y):
|
|
119 """Return a float representing the number of errors in the minibatch
|
|
120 over the total number of examples of the minibatch ; zero one
|
|
121 loss over the size of the minibatch
|
|
122 """
|
|
123
|
|
124 # check if y has same dimension of y_pred
|
|
125 if y.ndim != self.y_pred.ndim:
|
|
126 raise TypeError('y should have the same shape as self.y_pred',
|
|
127 ('y', target.type, 'y_pred', self.y_pred.type))
|
|
128 # check if y is of the correct datatype
|
|
129 if y.dtype.startswith('int'):
|
|
130 # the T.neq operator returns a vector of 0s and 1s, where 1
|
|
131 # represents a mistake in prediction
|
|
132 return T.mean(T.neq(self.y_pred, y))
|
|
133 else:
|
|
134 raise NotImplementedError()
|
|
135
|
|
136
|
|
137
|
|
138
|
|
139
|
|
140 def sgd_optimization_mnist( learning_rate=0.01, n_iter=100):
|
|
141 """
|
|
142 Demonstrate stochastic gradient descent optimization of a log-linear
|
|
143 model
|
|
144
|
|
145 This is demonstrated on MNIST.
|
|
146
|
|
147 :param learning_rate: learning rate used (factor for the stochastic
|
|
148 gradient
|
|
149
|
|
150 :param n_iter: number of iterations ot run the optimizer
|
|
151
|
|
152 """
|
|
153
|
|
154 # Load the dataset
|
|
155 f = gzip.open('mnist.pkl.gz','rb')
|
|
156 train_set, valid_set, test_set = cPickle.load(f)
|
|
157 f.close()
|
|
158
|
|
159 # make minibatches of size 20
|
|
160 batch_size = 20 # sized of the minibatch
|
|
161
|
|
162 # Dealing with the training set
|
|
163 # get the list of training images (x) and their labels (y)
|
|
164 (train_set_x, train_set_y) = train_set
|
|
165 # initialize the list of training minibatches with empty list
|
|
166 train_batches = []
|
|
167 for i in xrange(0, len(train_set_x), batch_size):
|
|
168 # add to the list of minibatches the minibatch starting at
|
|
169 # position i, ending at position i+batch_size
|
|
170 # a minibatch is a pair ; the first element of the pair is a list
|
|
171 # of datapoints, the second element is the list of corresponding
|
|
172 # labels
|
|
173 train_batches = train_batches + \
|
|
174 [(train_set_x[i:i+batch_size], train_set_y[i:i+batch_size])]
|
|
175
|
|
176 # Dealing with the validation set
|
|
177 (valid_set_x, valid_set_y) = valid_set
|
|
178 # initialize the list of validation minibatches
|
|
179 valid_batches = []
|
|
180 for i in xrange(0, len(valid_set_x), batch_size):
|
|
181 valid_batches = valid_batches + \
|
|
182 [(valid_set_x[i:i+batch_size], valid_set_y[i:i+batch_size])]
|
|
183
|
|
184 # Dealing with the testing set
|
|
185 (test_set_x, test_set_y) = test_set
|
|
186 # initialize the list of testing minibatches
|
|
187 test_batches = []
|
|
188 for i in xrange(0, len(test_set_x), batch_size):
|
|
189 test_batches = test_batches + \
|
|
190 [(test_set_x[i:i+batch_size], test_set_y[i:i+batch_size])]
|
|
191
|
|
192
|
|
193 ishape = (28,28) # this is the size of MNIST images
|
|
194
|
|
195 # allocate symbolic variables for the data
|
|
196 x = T.fmatrix() # the data is presented as rasterized images
|
|
197 y = T.lvector() # the labels are presented as 1D vector of
|
|
198 # [long int] labels
|
|
199
|
|
200 # construct the logistic regression class
|
|
201 classifier = LogisticRegression( \
|
|
202 input=x.reshape((batch_size,28*28)), n_in=28*28, n_out=10)
|
|
203
|
|
204 # the cost we minimize during training is the negative log likelihood of
|
|
205 # the model in symbolic format
|
|
206 cost = classifier.negative_log_likelihood(y)
|
|
207
|
|
208 # compiling a Theano function that computes the mistakes that are made by
|
|
209 # the model on a minibatch
|
|
210 test_model = theano.function([x,y], classifier.errors(y))
|
|
211
|
|
212 # compute the gradient of cost with respect to theta = (W,b)
|
|
213 g_W = T.grad(cost, classifier.W)
|
|
214 g_b = T.grad(cost, classifier.b)
|
|
215
|
|
216 # specify how to update the parameters of the model as a dictionary
|
|
217 updates ={classifier.W: classifier.W - learning_rate*g_W,\
|
|
218 classifier.b: classifier.b - learning_rate*g_b}
|
|
219
|
|
220 # compiling a Theano function `train_model` that returns the cost, but in
|
|
221 # the same time updates the parameter of the model based on the rules
|
|
222 # defined in `updates`
|
|
223 train_model = theano.function([x, y], cost, updates = updates )
|
|
224
|
|
225 n_minibatches = len(train_batches) # number of minibatchers
|
|
226
|
|
227 # early-stopping parameters
|
|
228 patience = 5000 # look as this many examples regardless
|
|
229 patience_increase = 2 # wait this much longer when a new best is
|
|
230 # found
|
|
231 improvement_threshold = 0.995 # a relative improvement of this much is
|
|
232 # considered significant
|
|
233 validation_frequency = n_minibatches # go through this many
|
|
234 # minibatche before checking the network
|
|
235 # on the validation set; in this case we
|
|
236 # check every epoch
|
|
237
|
|
238 best_params = None
|
|
239 best_validation_loss = float('inf')
|
|
240 test_score = 0.
|
|
241 start_time = time.clock()
|
|
242 # have a maximum of `n_iter` iterations through the entire dataset
|
|
243 for iter in xrange(n_iter* n_minibatches):
|
|
244
|
|
245 # get epoch and minibatch index
|
|
246 epoch = iter / n_minibatches
|
|
247 minibatch_index = iter % n_minibatches
|
|
248
|
|
249 # get the minibatches corresponding to `iter` modulo
|
|
250 # `len(train_batches)`
|
|
251 x,y = train_batches[ minibatch_index ]
|
|
252 cost_ij = train_model(x,y)
|
|
253
|
|
254 if (iter+1) % validation_frequency == 0:
|
|
255 # compute zero-one loss on validation set
|
|
256 this_validation_loss = 0.
|
|
257 for x,y in valid_batches:
|
|
258 # sum up the errors for each minibatch
|
|
259 this_validation_loss += test_model(x,y)
|
|
260 # get the average by dividing with the number of minibatches
|
|
261 this_validation_loss /= len(valid_batches)
|
|
262
|
|
263 print('epoch %i, minibatch %i/%i, validation error %f %%' % \
|
|
264 (epoch, minibatch_index+1,n_minibatches, \
|
|
265 this_validation_loss*100.))
|
|
266
|
|
267
|
|
268 # if we got the best validation score until now
|
|
269 if this_validation_loss < best_validation_loss:
|
|
270 #improve patience if loss improvement is good enough
|
|
271 if this_validation_loss < best_validation_loss * \
|
|
272 improvement_threshold :
|
|
273 patience = max(patience, iter * patience_increase)
|
|
274
|
|
275 best_validation_loss = this_validation_loss
|
|
276 # test it on the test set
|
|
277
|
|
278 test_score = 0.
|
|
279 for x,y in test_batches:
|
|
280 test_score += test_model(x,y)
|
|
281 test_score /= len(test_batches)
|
|
282 print((' epoch %i, minibatch %i/%i, test error of best '
|
|
283 'model %f %%') % \
|
|
284 (epoch, minibatch_index+1, n_minibatches,test_score*100.))
|
|
285
|
|
286 if patience <= iter :
|
|
287 break
|
|
288
|
|
289 end_time = time.clock()
|
|
290 print(('Optimization complete with best validation score of %f %%,'
|
|
291 'with test performance %f %%') %
|
|
292 (best_validation_loss * 100., test_score*100.))
|
|
293 print ('The code ran for %f minutes' % ((end_time-start_time)/60.))
|
|
294
|
|
295
|
|
296
|
|
297
|
|
298
|
|
299
|
|
300
|
|
301 if __name__ == '__main__':
|
|
302 sgd_optimization_mnist()
|
|
303
|