annotate code_tutoriel/convolutional_mlp.py @ 489:ee9836baade3

merge
author dumitru@dumitru.mtv.corp.google.com
date Mon, 31 May 2010 19:07:59 -0700
parents 4bc5eeec6394
children
rev   line source
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
1 """
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
2 This tutorial introduces the LeNet5 neural network architecture using Theano. LeNet5 is a
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
3 convolutional neural network, good for classifying images. This tutorial shows how to build the
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
4 architecture, and comes with all the hyper-parameters you need to reproduce the paper's MNIST
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
5 results.
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
6
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
7
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
8 This implementation simplifies the model in the following ways:
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
9
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
10 - LeNetConvPool doesn't implement location-specific gain and bias parameters
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
11 - LeNetConvPool doesn't implement pooling by average, it implements pooling by max.
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
12 - Digit classification is implemented with a logistic regression rather than an RBF network
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
13 - LeNet5 was not fully-connected convolutions at second layer
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
14
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
15 References:
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
16 - Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
17 Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998.
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
18 http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
19 """
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
20
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
21 import numpy, time, cPickle, gzip
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
22
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
23 import theano
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
24 import theano.tensor as T
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
25 from theano.tensor.signal import downsample
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
26 from theano.tensor.nnet import conv
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
27
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
28 from logistic_sgd import LogisticRegression, load_data
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
29 from mlp import HiddenLayer
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
30
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
31
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
32 class LeNetConvPoolLayer(object):
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
33 """Pool Layer of a convolutional network """
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
34
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
35 def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2,2)):
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
36 """
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
37 Allocate a LeNetConvPoolLayer with shared variable internal parameters.
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
38
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
39 :type rng: numpy.random.RandomState
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
40 :param rng: a random number generator used to initialize weights
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
41
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
42 :type input: theano.tensor.dtensor4
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
43 :param input: symbolic image tensor, of shape image_shape
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
44
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
45 :type filter_shape: tuple or list of length 4
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
46 :param filter_shape: (number of filters, num input feature maps,
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
47 filter height,filter width)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
48
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
49 :type image_shape: tuple or list of length 4
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
50 :param image_shape: (batch size, num input feature maps,
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
51 image height, image width)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
52
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
53 :type poolsize: tuple or list of length 2
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
54 :param poolsize: the downsampling (pooling) factor (#rows,#cols)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
55 """
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
56
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
57 assert image_shape[1]==filter_shape[1]
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
58 self.input = input
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
59
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
60 # initialize weights to temporary values until we know the shape of the output feature
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
61 # maps
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
62 W_values = numpy.zeros(filter_shape, dtype=theano.config.floatX)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
63 self.W = theano.shared(value = W_values)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
64
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
65 # the bias is a 1D tensor -- one bias per output feature map
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
66 b_values = numpy.zeros((filter_shape[0],), dtype= theano.config.floatX)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
67 self.b = theano.shared(value= b_values)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
68
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
69 # convolve input feature maps with filters
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
70 conv_out = conv.conv2d(input = input, filters = self.W,
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
71 filter_shape=filter_shape, image_shape=image_shape)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
72
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
73 # there are "num input feature maps * filter height * filter width" inputs
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
74 # to each hidden unit
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
75 fan_in = numpy.prod(filter_shape[1:])
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
76 # each unit in the lower layer receives a gradient from:
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
77 # "num output feature maps * filter height * filter width" / pooling size
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
78 fan_out = filter_shape[0] * numpy.prod(filter_shape[2:]) / numpy.prod(poolsize)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
79 # replace weight values with random weights
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
80 W_bound = numpy.sqrt(6./(fan_in + fan_out))
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
81 self.W.value = numpy.asarray(
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
82 rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
83 dtype = theano.config.floatX)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
84
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
85 # downsample each feature map individually, using maxpooling
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
86 pooled_out = downsample.max_pool2D( input = conv_out,
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
87 ds = poolsize, ignore_border=True)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
88
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
89 # add the bias term. Since the bias is a vector (1D array), we first
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
90 # reshape it to a tensor of shape (1,n_filters,1,1). Each bias will thus
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
91 # be broadcasted across mini-batches and feature map width & height
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
92 self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
93
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
94 # store parameters of this layer
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
95 self.params = [self.W, self.b]
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
96
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
97
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
98
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
99 def evaluate_lenet5(learning_rate=0.1, n_epochs=200, dataset='mnist.pkl.gz', nkerns=[20,50]):
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
100 """ Demonstrates lenet on MNIST dataset
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
101
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
102 :type learning_rate: float
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
103 :param learning_rate: learning rate used (factor for the stochastic
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
104 gradient)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
105
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
106 :type n_epochs: int
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
107 :param n_epochs: maximal number of epochs to run the optimizer
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
108
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
109 :type dataset: string
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
110 :param dataset: path to the dataset used for training /testing (MNIST here)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
111
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
112 :type nkerns: list of ints
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
113 :param nkerns: number of kernels on each layer
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
114 """
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
115
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
116 rng = numpy.random.RandomState(23455)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
117
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
118 datasets = load_data(dataset)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
119
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
120 train_set_x, train_set_y = datasets[0]
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
121 valid_set_x, valid_set_y = datasets[1]
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
122 test_set_x , test_set_y = datasets[2]
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
123
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
124
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
125 batch_size = 500 # size of the minibatch
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
126
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
127 # compute number of minibatches for training, validation and testing
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
128 n_train_batches = train_set_x.value.shape[0] / batch_size
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
129 n_valid_batches = valid_set_x.value.shape[0] / batch_size
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
130 n_test_batches = test_set_x.value.shape[0] / batch_size
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
131
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
132 # allocate symbolic variables for the data
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
133 index = T.lscalar() # index to a [mini]batch
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
134 x = T.matrix('x') # the data is presented as rasterized images
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
135 y = T.ivector('y') # the labels are presented as 1D vector of
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
136 # [int] labels
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
137
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
138
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
139 ishape = (28,28) # this is the size of MNIST images
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
140
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
141 ######################
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
142 # BUILD ACTUAL MODEL #
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
143 ######################
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
144 print '... building the model'
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
145
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
146 # Reshape matrix of rasterized images of shape (batch_size,28*28)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
147 # to a 4D tensor, compatible with our LeNetConvPoolLayer
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
148 layer0_input = x.reshape((batch_size,1,28,28))
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
149
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
150 # Construct the first convolutional pooling layer:
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
151 # filtering reduces the image size to (28-5+1,28-5+1)=(24,24)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
152 # maxpooling reduces this further to (24/2,24/2) = (12,12)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
153 # 4D output tensor is thus of shape (batch_size,nkerns[0],12,12)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
154 layer0 = LeNetConvPoolLayer(rng, input=layer0_input,
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
155 image_shape=(batch_size,1,28,28),
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
156 filter_shape=(nkerns[0],1,5,5), poolsize=(2,2))
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
157
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
158 # Construct the second convolutional pooling layer
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
159 # filtering reduces the image size to (12-5+1,12-5+1)=(8,8)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
160 # maxpooling reduces this further to (8/2,8/2) = (4,4)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
161 # 4D output tensor is thus of shape (nkerns[0],nkerns[1],4,4)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
162 layer1 = LeNetConvPoolLayer(rng, input=layer0.output,
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
163 image_shape=(batch_size,nkerns[0],12,12),
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
164 filter_shape=(nkerns[1],nkerns[0],5,5), poolsize=(2,2))
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
166 # the TanhLayer being fully-connected, it operates on 2D matrices of
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
167 # shape (batch_size,num_pixels) (i.e matrix of rasterized images).
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
168 # This will generate a matrix of shape (20,32*4*4) = (20,512)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
169 layer2_input = layer1.output.flatten(2)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
170
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
171 # construct a fully-connected sigmoidal layer
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
172 layer2 = HiddenLayer(rng, input=layer2_input, n_in=nkerns[1]*4*4,
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
173 n_out=500, activation = T.tanh)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
174
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
175 # classify the values of the fully-connected sigmoidal layer
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
176 layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
177
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
178 # the cost we minimize during training is the NLL of the model
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
179 cost = layer3.negative_log_likelihood(y)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
180
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
181 # create a function to compute the mistakes that are made by the model
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
182 test_model = theano.function([index], layer3.errors(y),
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
183 givens = {
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
184 x: test_set_x[index*batch_size:(index+1)*batch_size],
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
185 y: test_set_y[index*batch_size:(index+1)*batch_size]})
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
186
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
187 validate_model = theano.function([index], layer3.errors(y),
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
188 givens = {
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
189 x: valid_set_x[index*batch_size:(index+1)*batch_size],
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
190 y: valid_set_y[index*batch_size:(index+1)*batch_size]})
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
191
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
192 # create a list of all model parameters to be fit by gradient descent
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
193 params = layer3.params+ layer2.params+ layer1.params + layer0.params
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
194
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
195 # create a list of gradients for all model parameters
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
196 grads = T.grad(cost, params)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
197
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
198 # train_model is a function that updates the model parameters by SGD
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
199 # Since this model has many parameters, it would be tedious to manually
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
200 # create an update rule for each model parameter. We thus create the updates
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
201 # dictionary by automatically looping over all (params[i],grads[i]) pairs.
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
202 updates = {}
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
203 for param_i, grad_i in zip(params, grads):
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
204 updates[param_i] = param_i - learning_rate * grad_i
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
205
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
206 train_model = theano.function([index], cost, updates=updates,
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
207 givens = {
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
208 x: train_set_x[index*batch_size:(index+1)*batch_size],
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
209 y: train_set_y[index*batch_size:(index+1)*batch_size]})
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
210
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
211
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
212 ###############
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
213 # TRAIN MODEL #
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
214 ###############
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
215 print '... training'
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
216 # early-stopping parameters
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
217 patience = 10000 # look as this many examples regardless
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
218 patience_increase = 2 # wait this much longer when a new best is
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
219 # found
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
220 improvement_threshold = 0.995 # a relative improvement of this much is
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
221 # considered significant
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
222 validation_frequency = min(n_train_batches, patience/2)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
223 # go through this many
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
224 # minibatche before checking the network
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
225 # on the validation set; in this case we
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
226 # check every epoch
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
227
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
228 best_params = None
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
229 best_validation_loss = float('inf')
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
230 best_iter = 0
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
231 test_score = 0.
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
232 start_time = time.clock()
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
233
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
234 epoch = 0
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
235 done_looping = False
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
236
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
237 while (epoch < n_epochs) and (not done_looping):
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
238 epoch = epoch + 1
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
239 for minibatch_index in xrange(n_train_batches):
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
240
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
241 iter = epoch * n_train_batches + minibatch_index
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
242
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
243 if iter %100 == 0:
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
244 print 'training @ iter = ', iter
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
245 cost_ij = train_model(minibatch_index)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
246
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
247 if (iter+1) % validation_frequency == 0:
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
248
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
249 # compute zero-one loss on validation set
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
250 validation_losses = [validate_model(i) for i in xrange(n_valid_batches)]
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
251 this_validation_loss = numpy.mean(validation_losses)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
252 print('epoch %i, minibatch %i/%i, validation error %f %%' % \
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
253 (epoch, minibatch_index+1, n_train_batches, \
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
254 this_validation_loss*100.))
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
255
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
256
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
257 # if we got the best validation score until now
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
258 if this_validation_loss < best_validation_loss:
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
259
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
260 #improve patience if loss improvement is good enough
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
261 if this_validation_loss < best_validation_loss * \
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
262 improvement_threshold :
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
263 patience = max(patience, iter * patience_increase)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
264
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
265 # save best validation score and iteration number
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
266 best_validation_loss = this_validation_loss
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
267 best_iter = iter
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
268
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
269 # test it on the test set
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
270 test_losses = [test_model(i) for i in xrange(n_test_batches)]
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
271 test_score = numpy.mean(test_losses)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
272 print((' epoch %i, minibatch %i/%i, test error of best '
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
273 'model %f %%') %
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
274 (epoch, minibatch_index+1, n_train_batches,
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
275 test_score*100.))
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
276
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
277 if patience <= iter :
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
278 done_looping = False
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
279 break
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
280
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
281 end_time = time.clock()
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
282 print('Optimization complete.')
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
283 print('Best validation score of %f %% obtained at iteration %i,'\
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
284 'with test performance %f %%' %
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
285 (best_validation_loss * 100., best_iter, test_score*100.))
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
286 print('The code ran for %f minutes' % ((end_time-start_time)/60.))
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
287
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
288 if __name__ == '__main__':
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
289 evaluate_lenet5()
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
290
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
291 def experiment(state, channel):
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
292 evaluate_lenet5(state.learning_rate, dataset=state.dataset)