annotate baseline/conv_mlp/convolutional_mlp.py @ 607:d840139444fe

NIPS workshop spotlight
author Yoshua Bengio <bengioy@iro.umontreal.ca>
date Fri, 26 Nov 2010 17:41:43 -0500
parents d41fe003fade
children
rev   line source
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
1 """
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
2 This tutorial introduces the LeNet5 neural network architecture using Theano. LeNet5 is a
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
3 convolutional neural network, good for classifying images. This tutorial shows how to build the
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
4 architecture, and comes with all the hyper-parameters you need to reproduce the paper's MNIST
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
5 results.
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
6
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
7 The best results are obtained after X iterations of the main program loop, which takes ***
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
8 minutes on my workstation (an Intel Core i7, circa July 2009), and *** minutes on my GPU (an
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
9 NVIDIA GTX 285 graphics processor).
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
10
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
11 This implementation simplifies the model in the following ways:
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
12
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
13 - LeNetConvPool doesn't implement location-specific gain and bias parameters
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
14 - LeNetConvPool doesn't implement pooling by average, it implements pooling by max.
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
15 - Digit classification is implemented with a logistic regression rather than an RBF network
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
16 - LeNet5 was not fully-connected convolutions at second layer
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
17
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
18 References:
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
19 - Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
20 Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998.
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
21 http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
22 """
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
23
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
24 import numpy, theano, cPickle, gzip, time
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
25 import theano.tensor as T
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
26 import theano.sandbox.softsign
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
27 import sys
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
28 import pylearn.datasets.MNIST
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
29 from pylearn.io import filetensor as ft
253
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
30 from theano.sandbox import conv, downsample
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
31
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
32 from ift6266 import datasets
253
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
33 import theano,pylearn.version,ift6266
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
34
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
35 class LeNetConvPoolLayer(object):
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
36
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
37 def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2,2)):
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
38 """
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
39 Allocate a LeNetConvPoolLayer with shared variable internal parameters.
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
40 :type rng: numpy.random.RandomState
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
41 :param rng: a random number generator used to initialize weights
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
42 :type input: theano.tensor.dtensor4
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
43 :param input: symbolic image tensor, of shape image_shape
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
44 :type filter_shape: tuple or list of length 4
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
45 :param filter_shape: (number of filters, num input feature maps,
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
46 filter height,filter width)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
47 :type image_shape: tuple or list of length 4
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
48 :param image_shape: (batch size, num input feature maps,
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
49 image height, image width)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
50 :type poolsize: tuple or list of length 2
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
51 :param poolsize: the downsampling (pooling) factor (#rows,#cols)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
52 """
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
53 assert image_shape[1]==filter_shape[1]
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
54 self.input = input
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
55
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
56 # initialize weight values: the fan-in of each hidden neuron is
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
57 # restricted by the size of the receptive fields.
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
58 fan_in = numpy.prod(filter_shape[1:])
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
59 W_values = numpy.asarray( rng.uniform( \
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
60 low = -numpy.sqrt(3./fan_in), \
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
61 high = numpy.sqrt(3./fan_in), \
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
62 size = filter_shape), dtype = theano.config.floatX)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
63 self.W = theano.shared(value = W_values)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
64
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
65 # the bias is a 1D tensor -- one bias per output feature map
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
66 b_values = numpy.zeros((filter_shape[0],), dtype= theano.config.floatX)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
67 self.b = theano.shared(value= b_values)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
68
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
69 # convolve input feature maps with filters
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
70 conv_out = conv.conv2d(input, self.W,
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
71 filter_shape=filter_shape, image_shape=image_shape)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
72
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
73 # downsample each feature map individually, using maxpooling
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
74 pooled_out = downsample.max_pool2D(conv_out, poolsize, ignore_border=True)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
75
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
76 # add the bias term. Since the bias is a vector (1D array), we first
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
77 # reshape it to a tensor of shape (1,n_filters,1,1). Each bias will thus
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
78 # be broadcasted across mini-batches and feature map width & height
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
79 self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
80
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
81 # store parameters of this layer
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
82 self.params = [self.W, self.b]
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
83
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
84
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
85 class SigmoidalLayer(object):
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
86 def __init__(self, rng, input, n_in, n_out):
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
87 """
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
88 Typical hidden layer of a MLP: units are fully-connected and have
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
89 sigmoidal activation function. Weight matrix W is of shape (n_in,n_out)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
90 and the bias vector b is of shape (n_out,).
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
91
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
92 Hidden unit activation is given by: sigmoid(dot(input,W) + b)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
93
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
94 :type rng: numpy.random.RandomState
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
95 :param rng: a random number generator used to initialize weights
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
96 :type input: theano.tensor.dmatrix
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
97 :param input: a symbolic tensor of shape (n_examples, n_in)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
98 :type n_in: int
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
99 :param n_in: dimensionality of input
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
100 :type n_out: int
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
101 :param n_out: number of hidden units
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
102 """
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
103 self.input = input
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
104
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
105 W_values = numpy.asarray( rng.uniform( \
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
106 low = -numpy.sqrt(6./(n_in+n_out)), \
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
107 high = numpy.sqrt(6./(n_in+n_out)), \
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
108 size = (n_in, n_out)), dtype = theano.config.floatX)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
109 self.W = theano.shared(value = W_values)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
110
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
111 b_values = numpy.zeros((n_out,), dtype= theano.config.floatX)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
112 self.b = theano.shared(value= b_values)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
113
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
114 self.output = T.tanh(T.dot(input, self.W) + self.b)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
115 self.params = [self.W, self.b]
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
116
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
117
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
118 class LogisticRegression(object):
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
119 """Multi-class Logistic Regression Class
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
120
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
121 The logistic regression is fully described by a weight matrix :math:`W`
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
122 and bias vector :math:`b`. Classification is done by projecting data
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
123 points onto a set of hyperplanes, the distance to which is used to
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
124 determine a class membership probability.
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
125 """
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
126
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
127 def __init__(self, input, n_in, n_out):
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
128 """ Initialize the parameters of the logistic regression
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
129 :param input: symbolic variable that describes the input of the
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
130 architecture (one minibatch)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
131 :type n_in: int
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
132 :param n_in: number of input units, the dimension of the space in
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
133 which the datapoints lie
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
134 :type n_out: int
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
135 :param n_out: number of output units, the dimension of the space in
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
136 which the labels lie
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
137 """
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
138
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
139 # initialize with 0 the weights W as a matrix of shape (n_in, n_out)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
140 self.W = theano.shared( value=numpy.zeros((n_in,n_out),
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
141 dtype = theano.config.floatX) )
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
142 # initialize the baises b as a vector of n_out 0s
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
143 self.b = theano.shared( value=numpy.zeros((n_out,),
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
144 dtype = theano.config.floatX) )
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
145 # compute vector of class-membership probabilities in symbolic form
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
146 self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
147
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
148 # compute prediction as class whose probability is maximal in
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
149 # symbolic form
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
150 self.y_pred=T.argmax(self.p_y_given_x, axis=1)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
151
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
152 # list of parameters for this layer
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
153 self.params = [self.W, self.b]
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
154
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
155 def negative_log_likelihood(self, y):
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
156 """Return the mean of the negative log-likelihood of the prediction
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
157 of this model under a given target distribution.
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
158 :param y: corresponds to a vector that gives for each example the
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
159 correct label
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
160 Note: we use the mean instead of the sum so that
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
161 the learning rate is less dependent on the batch size
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
162 """
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
163 return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y])
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
164
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
165 def errors(self, y):
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
166 """Return a float representing the number of errors in the minibatch
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
167 over the total number of examples of the minibatch ; zero one
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
168 loss over the size of the minibatch
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
169 """
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
170 # check if y has same dimension of y_pred
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
171 if y.ndim != self.y_pred.ndim:
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
172 raise TypeError('y should have the same shape as self.y_pred',
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
173 ('y', target.type, 'y_pred', self.y_pred.type))
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
174
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
175 # check if y is of the correct datatype
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
176 if y.dtype.startswith('int'):
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
177 # the T.neq operator returns a vector of 0s and 1s, where 1
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
178 # represents a mistake in prediction
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
179 return T.mean(T.neq(self.y_pred, y))
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
180 else:
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
181 raise NotImplementedError()
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
182
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
183
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
184 def evaluate_lenet5(learning_rate=0.1, n_iter=200, batch_size=20, n_kern0=20, n_kern1=50, n_layer=3, filter_shape0=5, filter_shape1=5, sigmoide_size=500, dataset='mnist.pkl.gz'):
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
185 rng = numpy.random.RandomState(23455)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
186
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
187 print 'Before load dataset'
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
188 dataset=datasets.nist_digits
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
189 train_batches= dataset.train(batch_size)
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
190 valid_batches=dataset.valid(batch_size)
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
191 test_batches=dataset.test(batch_size)
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
192 #print valid_batches.shape
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
193 #print test_batches.shape
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
194 print 'After load dataset'
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
195
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
196 ishape = (32,32) # this is the size of NIST images
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
197 n_kern2=80
253
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
198 n_kern3=100
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
199 if n_layer==4:
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
200 filter_shape1=3
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
201 filter_shape2=3
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
202 if n_layer==5:
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
203 filter_shape0=4
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
204 filter_shape1=2
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
205 filter_shape2=2
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
206 filter_shape3=2
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
207
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
208
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
209 # allocate symbolic variables for the data
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
210 x = T.matrix('x') # rasterized images
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
211 y = T.lvector() # the labels are presented as 1D vector of [long int] labels
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
212
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
213
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
214 ######################
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
215 # BUILD ACTUAL MODEL #
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
216 ######################
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
217
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
218 # Reshape matrix of rasterized images of shape (batch_size,28*28)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
219 # to a 4D tensor, compatible with our LeNetConvPoolLayer
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
220 layer0_input = x.reshape((batch_size,1,32,32))
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
221
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
222 # Construct the first convolutional pooling layer:
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
223 # filtering reduces the image size to (32-5+1,32-5+1)=(28,28)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
224 # maxpooling reduces this further to (28/2,28/2) = (14,14)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
225 # 4D output tensor is thus of shape (20,20,14,14)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
226 layer0 = LeNetConvPoolLayer(rng, input=layer0_input,
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
227 image_shape=(batch_size,1,32,32),
253
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
228 filter_shape=(n_kern0,1,filter_shape0,filter_shape0), poolsize=(2,2))
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
229
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
230 if(n_layer>2):
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
231
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
232 # Construct the second convolutional pooling layer
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
233 # filtering reduces the image size to (14-5+1,14-5+1)=(10,10)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
234 # maxpooling reduces this further to (10/2,10/2) = (5,5)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
235 # 4D output tensor is thus of shape (20,50,5,5)
253
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
236 fshape0=(32-filter_shape0+1)/2
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
237 layer1 = LeNetConvPoolLayer(rng, input=layer0.output,
253
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
238 image_shape=(batch_size,n_kern0,fshape0,fshape0),
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
239 filter_shape=(n_kern1,n_kern0,filter_shape1,filter_shape1), poolsize=(2,2))
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
240
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
241 else:
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
242
253
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
243 fshape0=(32-filter_shape0+1)/2
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
244 layer1_input = layer0.output.flatten(2)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
245 # construct a fully-connected sigmoidal layer
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
246 layer1 = SigmoidalLayer(rng, input=layer1_input,n_in=n_kern0*fshape0*fshape0, n_out=sigmoide_size)
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
247
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
248 layer2 = LogisticRegression(input=layer1.output, n_in=sigmoide_size, n_out=10)
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
249 cost = layer2.negative_log_likelihood(y)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
250 test_model = theano.function([x,y], layer2.errors(y))
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
251 params = layer2.params+ layer1.params + layer0.params
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
252
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
253
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
254 if(n_layer>3):
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
255
253
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
256 fshape0=(32-filter_shape0+1)/2
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
257 fshape1=(fshape0-filter_shape1+1)/2
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
258 layer2 = LeNetConvPoolLayer(rng, input=layer1.output,
253
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
259 image_shape=(batch_size,n_kern1,fshape1,fshape1),
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
260 filter_shape=(n_kern2,n_kern1,filter_shape2,filter_shape2), poolsize=(2,2))
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
261
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
262 if(n_layer>4):
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
263
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
264
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
265 fshape0=(32-filter_shape0+1)/2
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
266 fshape1=(fshape0-filter_shape1+1)/2
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
267 fshape2=(fshape1-filter_shape2+1)/2
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
268 fshape3=(fshape2-filter_shape3+1)/2
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
269 layer3 = LeNetConvPoolLayer(rng, input=layer2.output,
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
270 image_shape=(batch_size,n_kern2,fshape2,fshape2),
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
271 filter_shape=(n_kern3,n_kern2,filter_shape3,filter_shape3), poolsize=(2,2))
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
272
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
273 layer4_input = layer3.output.flatten(2)
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
274
253
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
275 layer4 = SigmoidalLayer(rng, input=layer4_input,
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
276 n_in=n_kern3*fshape3*fshape3, n_out=sigmoide_size)
253
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
277
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
278
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
279 layer5 = LogisticRegression(input=layer4.output, n_in=sigmoide_size, n_out=10)
253
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
280
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
281 cost = layer5.negative_log_likelihood(y)
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
282
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
283 test_model = theano.function([x,y], layer5.errors(y))
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
284
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
285 params = layer5.params+ layer4.params+ layer3.params+ layer2.params+ layer1.params + layer0.params
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
286
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
287 elif(n_layer>3):
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
288
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
289 fshape0=(32-filter_shape0+1)/2
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
290 fshape1=(fshape0-filter_shape1+1)/2
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
291 fshape2=(fshape1-filter_shape2+1)/2
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
292 layer3_input = layer2.output.flatten(2)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
293
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
294 layer3 = SigmoidalLayer(rng, input=layer3_input,
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
295 n_in=n_kern2*fshape2*fshape2, n_out=sigmoide_size)
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
296
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
297
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
298 layer4 = LogisticRegression(input=layer3.output, n_in=sigmoide_size, n_out=10)
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
299
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
300 cost = layer4.negative_log_likelihood(y)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
301
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
302 test_model = theano.function([x,y], layer4.errors(y))
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
303
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
304 params = layer4.params+ layer3.params+ layer2.params+ layer1.params + layer0.params
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
305
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
306
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
307 elif(n_layer>2):
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
308
253
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
309 fshape0=(32-filter_shape0+1)/2
a491d3600a77 Derniere version du reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 196
diff changeset
310 fshape1=(fshape0-filter_shape1+1)/2
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
311
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
312 # the SigmoidalLayer being fully-connected, it operates on 2D matrices of
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
313 # shape (batch_size,num_pixels) (i.e matrix of rasterized images).
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
314 # This will generate a matrix of shape (20,32*4*4) = (20,512)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
315 layer2_input = layer1.output.flatten(2)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
316
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
317 # construct a fully-connected sigmoidal layer
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
318 layer2 = SigmoidalLayer(rng, input=layer2_input,
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
319 n_in=n_kern1*fshape1*fshape1, n_out=sigmoide_size)
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
320
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
321
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
322 # classify the values of the fully-connected sigmoidal layer
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
323 layer3 = LogisticRegression(input=layer2.output, n_in=sigmoide_size, n_out=10)
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
324
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
325 # the cost we minimize during training is the NLL of the model
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
326 cost = layer3.negative_log_likelihood(y)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
327
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
328 # create a function to compute the mistakes that are made by the model
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
329 test_model = theano.function([x,y], layer3.errors(y))
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
330
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
331 # create a list of all model parameters to be fit by gradient descent
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
332 params = layer3.params+ layer2.params+ layer1.params + layer0.params
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
333
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
334
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
335
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
336
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
337
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
338 # create a list of gradients for all model parameters
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
339 grads = T.grad(cost, params)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
340
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
341 # train_model is a function that updates the model parameters by SGD
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
342 # Since this model has many parameters, it would be tedious to manually
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
343 # create an update rule for each model parameter. We thus create the updates
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
344 # dictionary by automatically looping over all (params[i],grads[i]) pairs.
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
345 updates = {}
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
346 for param_i, grad_i in zip(params, grads):
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
347 updates[param_i] = param_i - learning_rate * grad_i
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
348 train_model = theano.function([x, y], cost, updates=updates)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
349
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
350
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
351 ###############
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
352 # TRAIN MODEL #
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
353 ###############
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
354
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
355 #n_minibatches = len(train_batches)
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
356 n_minibatches=0
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
357 n_valid=0
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
358 n_test=0
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
359 for x, y in dataset.train(batch_size):
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
360 if x.shape[0] == batch_size:
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
361 n_minibatches+=1
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
362 n_minibatches*=batch_size
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
363 print n_minibatches
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
364
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
365 for x, y in dataset.valid(batch_size):
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
366 if x.shape[0] == batch_size:
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
367 n_valid+=1
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
368 n_valid*=batch_size
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
369 print n_valid
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
370
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
371 for x, y in dataset.test(batch_size):
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
372 if x.shape[0] == batch_size:
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
373 n_test+=1
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
374 n_test*=batch_size
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
375 print n_test
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
376
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
377
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
378 # early-stopping parameters
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
379 patience = 10000 # look as this many examples regardless
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
380 patience_increase = 2 # wait this much longer when a new best is
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
381 # found
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
382 improvement_threshold = 0.995 # a relative improvement of this much is
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
383 # considered significant
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
384 validation_frequency = n_minibatches # go through this many
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
385 # minibatche before checking the network
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
386 # on the validation set; in this case we
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
387 # check every epoch
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
388
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
389 best_params = None
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
390 best_validation_loss = float('inf')
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
391 best_iter = 0
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
392 test_score = 0.
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
393 start_time = time.clock()
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
394
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
395
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
396 # have a maximum of `n_iter` iterations through the entire dataset
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
397 iter=0
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
398 for epoch in xrange(n_iter):
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
399 for x, y in train_batches:
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
400 if x.shape[0] != batch_size:
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
401 continue
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
402 iter+=1
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
403
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
404 # get epoch and minibatch index
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
405 #epoch = iter / n_minibatches
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
406 minibatch_index = iter % n_minibatches
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
407
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
408 if iter %100 == 0:
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
409 print 'training @ iter = ', iter
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
410 cost_ij = train_model(x,y)
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
411
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
412
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
413 # compute zero-one loss on validation set
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
414 this_validation_loss = 0.
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
415 for x,y in valid_batches:
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
416 if x.shape[0] != batch_size:
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
417 continue
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
418 # sum up the errors for each minibatch
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
419 this_validation_loss += test_model(x,y)
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
420
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
421 # get the average by dividing with the number of minibatches
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
422 this_validation_loss /= n_valid
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
423 print('epoch %i, minibatch %i/%i, validation error %f %%' % \
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
424 (epoch, minibatch_index+1, n_minibatches, \
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
425 this_validation_loss*100.))
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
426
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
427
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
428 # if we got the best validation score until now
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
429 if this_validation_loss < best_validation_loss:
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
430
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
431 #improve patience if loss improvement is good enough
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
432 if this_validation_loss < best_validation_loss * \
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
433 improvement_threshold :
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
434 patience = max(patience, iter * patience_increase)
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
435
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
436 # save best validation score and iteration number
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
437 best_validation_loss = this_validation_loss
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
438 best_iter = iter
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
439
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
440 # test it on the test set
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
441 test_score = 0.
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
442 for x,y in test_batches:
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
443 if x.shape[0] != batch_size:
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
444 continue
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
445 test_score += test_model(x,y)
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
446 test_score /= n_test
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
447 print((' epoch %i, minibatch %i/%i, test error of best '
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
448 'model %f %%') %
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
449 (epoch, minibatch_index+1, n_minibatches,
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
450 test_score*100.))
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
451
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
452 if patience <= iter :
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
453 break
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
454
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
455 end_time = time.clock()
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
456 print('Optimization complete.')
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
457 print('Best validation score of %f %% obtained at iteration %i,'\
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
458 'with test performance %f %%' %
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
459 (best_validation_loss * 100., best_iter, test_score*100.))
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
460 print('The code ran for %f minutes' % ((end_time-start_time)/60.))
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
461
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
462 return (best_validation_loss * 100., test_score*100., (end_time-start_time)/60., best_iter)
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
463
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
464 if __name__ == '__main__':
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
465 evaluate_lenet5()
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
466
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
467 def experiment(state, channel):
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
468 print 'start experiment'
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
469 (best_validation_loss, test_score, minutes_trained, iter) = evaluate_lenet5(state.learning_rate, state.n_iter, state.batch_size, state.n_kern0, state.n_kern1, state.n_layer, state.filter_shape0, state.filter_shape1,state.sigmoide_size)
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
470 print 'end experiment'
270
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
471
d41fe003fade Reseau a convolution avec le bon dataset
Jeremy Eustache <jeremy.eustache@voila.fr>
parents: 253
diff changeset
472 pylearn.version.record_versions(state,[theano,ift6266,pylearn])
146
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
473
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
474 state.best_validation_loss = best_validation_loss
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
475 state.test_score = test_score
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
476 state.minutes_trained = minutes_trained
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
477 state.iter = iter
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
478
33038ab4e799 Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff changeset
479 return channel.COMPLETE