Mercurial > ift6266
annotate utils/scalar_series/test_series.py @ 555:b6dfba0a110c
ameliorer l'aspect visuel, Myriam
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Thu, 03 Jun 2010 08:09:35 -0400 |
parents | d364a130b221 |
children |
rev | line source |
---|---|
186
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
1 #!/usr/bin/python |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
2 # coding: utf-8 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
3 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
4 import sys |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
5 import tempfile |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
6 import os.path |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
7 import os |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
8 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
9 import numpy |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
10 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
11 from series import BaseSeries, AccumulatorSeries, SeriesContainer, BasicStatsSeries, SeriesMultiplexer, SeriesList, ParamsArrayStats |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
12 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
13 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
14 BASEDIR = tempfile.mkdtemp() |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
15 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
16 def tempname(): |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
17 file = tempfile.NamedTemporaryFile(dir=BASEDIR) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
18 filepath = file.name |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
19 return os.path.split(filepath) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
20 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
21 def tempdir(): |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
22 wholepath = os.path.dirname(tempfile.mkdtemp(dir=BASEDIR)) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
23 # split again, interpreting the last directory as a filename |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
24 return os.path.split(wholepath) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
25 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
26 def tempseries(type='f', flush_every=1): |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
27 dir, filename = tempname() |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
28 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
29 s = BaseSeries(name=filename, directory=dir, type=type, flush_every=flush_every) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
30 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
31 return s |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
32 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
33 def test_Series_storeload(): |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
34 s = tempseries() |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
35 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
36 s.append(12.0) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
37 s.append_list([13.0,14.0,15.0]) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
38 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
39 s2 = BaseSeries(name=s.name, directory=s.directory, flush_every=15) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
40 # also test if elements stored before load_from_file (and before a flush) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
41 # are deleted (or array is restarted from scratch... both work) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
42 s2.append(10.0) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
43 s2.append_list([30.0,40.0]) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
44 s2.load_from_file() |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
45 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
46 assert s2.tolist() == [12.0,13.0,14.0,15.0] |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
47 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
48 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
49 def test_AccumulatorSeries_mean(): |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
50 dir, filename = tempname() |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
51 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
52 s = AccumulatorSeries(reduce_every=15, mean=True, name=filename, directory=dir) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
53 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
54 for i in range(50): |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
55 s.append(i) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
56 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
57 assert s.tolist() == [7.0,22.0,37.0] |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
58 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
59 def test_BasicStatsSeries_commoncase(): |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
60 a1 = numpy.arange(25).reshape((5,5)) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
61 a2 = numpy.arange(40).reshape((8,5)) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
62 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
63 parent_dir, dir = tempdir() |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
64 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
65 bss = BasicStatsSeries(parent_directory=parent_dir, name=dir) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
66 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
67 bss.append(a1) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
68 bss.append(a2) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
69 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
70 assert bss.means.tolist() == [12.0, 19.5] |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
71 assert bss.mins.tolist() == [0.0, 0.0] |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
72 assert bss.maxes.tolist() == [24.0, 39.0] |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
73 assert (bss.stds.tolist()[0] - 7.211102) < 1e-3 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
74 assert (bss.stds.tolist()[1] - 11.54339) < 1e-3 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
75 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
76 # try to reload |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
77 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
78 bss2 = BasicStatsSeries(parent_directory=parent_dir, name=dir) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
79 bss2.load_from_directory() |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
80 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
81 assert bss2.means.tolist() == [12.0, 19.5] |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
82 assert bss2.mins.tolist() == [0.0, 0.0] |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
83 assert bss2.maxes.tolist() == [24.0, 39.0] |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
84 assert (bss2.stds.tolist()[0] - 7.211102) < 1e-3 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
85 assert (bss2.stds.tolist()[1] - 11.54339) < 1e-3 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
86 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
87 def test_BasicStatsSeries_reload(): |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
88 a1 = numpy.arange(25).reshape((5,5)) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
89 a2 = numpy.arange(40).reshape((8,5)) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
90 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
91 parent_dir, dir = tempdir() |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
92 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
93 bss = BasicStatsSeries(parent_directory=parent_dir, name=dir) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
94 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
95 bss.append(a1) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
96 bss.append(a2) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
97 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
98 # try to reload |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
99 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
100 bss2 = BasicStatsSeries(parent_directory=parent_dir, name=dir) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
101 bss2.load_from_directory() |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
102 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
103 assert bss2.means.tolist() == [12.0, 19.5] |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
104 assert bss2.mins.tolist() == [0.0, 0.0] |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
105 assert bss2.maxes.tolist() == [24.0, 39.0] |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
106 assert (bss2.stds.tolist()[0] - 7.211102) < 1e-3 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
107 assert (bss2.stds.tolist()[1] - 11.54339) < 1e-3 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
108 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
109 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
110 def test_BasicStatsSeries_withaccumulator(): |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
111 a1 = numpy.arange(25).reshape((5,5)) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
112 a2 = numpy.arange(40).reshape((8,5)) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
113 a3 = numpy.arange(20).reshape((4,5)) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
114 a4 = numpy.arange(48).reshape((6,8)) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
115 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
116 parent_dir, dir = tempdir() |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
117 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
118 sc = AccumulatorSeries.series_constructor(reduce_every=2, mean=False) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
119 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
120 bss = BasicStatsSeries(parent_directory=parent_dir, name=dir, series_constructor=sc) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
121 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
122 bss.append(a1) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
123 bss.append(a2) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
124 bss.append(a3) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
125 bss.append(a4) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
126 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
127 assert bss.means.tolist() == [31.5, 33.0] |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
128 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
129 def test_SeriesList_withbasicstats(): |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
130 dir = tempfile.mkdtemp(dir=BASEDIR) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
131 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
132 bscstr = BasicStatsSeries.series_constructor() |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
133 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
134 slist = SeriesList(num_elements=5, name="foo", directory=dir, series_constructor=bscstr) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
135 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
136 for i in range(10): # 10 elements in each list |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
137 curlist = [] |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
138 for j in range(5): # 5 = num_elements, ie. number of list to append to |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
139 dist = numpy.arange(i*j, i*j+10) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
140 curlist.append(dist) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
141 slist.append(curlist) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
142 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
143 slist2 = SeriesList(num_elements=5, name="foo", directory=dir, series_constructor=bscstr) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
144 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
145 slist2.load_from_files() |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
146 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
147 l1 = slist2._subseries[0].means.tolist() |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
148 l2 = slist2._subseries[4].means.tolist() |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
149 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
150 print l1 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
151 print l2 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
152 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
153 assert l1 == [4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5] |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
154 assert l2 == [4.5, 8.5, 12.5, 16.5, 20.5, 24.5, 28.5, 32.5, 36.5, 40.5] |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
155 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
156 # same test as above, just with the shortcut |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
157 def test_ParamsArrayStats_reload(): |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
158 dir = tempfile.mkdtemp(dir=BASEDIR) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
159 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
160 slist = ParamsArrayStats(5, name="foo", directory=dir) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
161 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
162 for i in range(10): # 10 elements in each list |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
163 curlist = [] |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
164 for j in range(5): # 5 = num_elements, ie. number of list to append to |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
165 dist = numpy.arange(i*j, i*j+10) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
166 curlist.append(dist) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
167 slist.append(curlist) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
168 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
169 slist2 = ParamsArrayStats(5, name="foo", directory=dir) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
170 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
171 slist2.load_from_files() |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
172 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
173 l1 = slist2._subseries[0].means.tolist() |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
174 l2 = slist2._subseries[4].means.tolist() |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
175 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
176 print l1 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
177 print l2 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
178 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
179 assert l1 == [4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5] |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
180 assert l2 == [4.5, 8.5, 12.5, 16.5, 20.5, 24.5, 28.5, 32.5, 36.5, 40.5] |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
181 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
182 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
183 def manual_BasicStatsSeries_graph(): |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
184 parent_dir, dir = tempdir() |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
185 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
186 bss = BasicStatsSeries(parent_directory=parent_dir, name=dir) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
187 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
188 for i in range(50): |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
189 bss.append(1.0/numpy.arange(i*5, i*5+5)) |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
190 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
191 bss.graph() |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
192 |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
193 #if __name__ == '__main__': |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
194 # import pylab |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
195 # manual_BasicStatsSeries_graph() |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
196 # pylab.show() |
d364a130b221
Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents:
diff
changeset
|
197 |