Mercurial > ift6266
annotate baseline/mlp/mlp_nist.py @ 336:a79db7cee035
Arrange pour avoir un taux d'apprentissage decroissant decent pour NIST
author | sylvainpl |
---|---|
date | Thu, 15 Apr 2010 14:41:00 -0400 |
parents | 1763c64030d1 |
children | fca22114bb23 |
rev | line source |
---|---|
110 | 1 """ |
2 This tutorial introduces the multilayer perceptron using Theano. | |
3 | |
4 A multilayer perceptron is a logistic regressor where | |
5 instead of feeding the input to the logistic regression you insert a | |
6 intermidiate layer, called the hidden layer, that has a nonlinear | |
7 activation function (usually tanh or sigmoid) . One can use many such | |
8 hidden layers making the architecture deep. The tutorial will also tackle | |
9 the problem of MNIST digit classification. | |
10 | |
11 .. math:: | |
12 | |
13 f(x) = G( b^{(2)} + W^{(2)}( s( b^{(1)} + W^{(1)} x))), | |
14 | |
15 References: | |
16 | |
17 - textbooks: "Pattern Recognition and Machine Learning" - | |
18 Christopher M. Bishop, section 5 | |
19 | |
20 TODO: recommended preprocessing, lr ranges, regularization ranges (explain | |
21 to do lr first, then add regularization) | |
22 | |
23 """ | |
24 __docformat__ = 'restructedtext en' | |
25 | |
26 import pdb | |
27 import numpy | |
28 import pylab | |
29 import theano | |
30 import theano.tensor as T | |
31 import time | |
32 import theano.tensor.nnet | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
33 import pylearn |
304
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
34 import theano,pylearn.version,ift6266 |
110 | 35 from pylearn.io import filetensor as ft |
322 | 36 from ift6266 import datasets |
110 | 37 |
38 data_path = '/data/lisa/data/nist/by_class/' | |
39 | |
40 class MLP(object): | |
41 """Multi-Layer Perceptron Class | |
42 | |
43 A multilayer perceptron is a feedforward artificial neural network model | |
44 that has one layer or more of hidden units and nonlinear activations. | |
45 Intermidiate layers usually have as activation function thanh or the | |
46 sigmoid function while the top layer is a softamx layer. | |
47 """ | |
48 | |
49 | |
50 | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
51 def __init__(self, input, n_in, n_hidden, n_out,learning_rate): |
110 | 52 """Initialize the parameters for the multilayer perceptron |
53 | |
54 :param input: symbolic variable that describes the input of the | |
55 architecture (one minibatch) | |
56 | |
57 :param n_in: number of input units, the dimension of the space in | |
58 which the datapoints lie | |
59 | |
60 :param n_hidden: number of hidden units | |
61 | |
62 :param n_out: number of output units, the dimension of the space in | |
63 which the labels lie | |
64 | |
65 """ | |
66 | |
67 # initialize the parameters theta = (W1,b1,W2,b2) ; note that this | |
68 # example contains only one hidden layer, but one can have as many | |
69 # layers as he/she wishes, making the network deeper. The only | |
70 # problem making the network deep this way is during learning, | |
71 # backpropagation being unable to move the network from the starting | |
72 # point towards; this is where pre-training helps, giving a good | |
73 # starting point for backpropagation, but more about this in the | |
74 # other tutorials | |
75 | |
76 # `W1` is initialized with `W1_values` which is uniformely sampled | |
77 # from -6./sqrt(n_in+n_hidden) and 6./sqrt(n_in+n_hidden) | |
78 # the output of uniform if converted using asarray to dtype | |
79 # theano.config.floatX so that the code is runable on GPU | |
80 W1_values = numpy.asarray( numpy.random.uniform( \ | |
81 low = -numpy.sqrt(6./(n_in+n_hidden)), \ | |
82 high = numpy.sqrt(6./(n_in+n_hidden)), \ | |
83 size = (n_in, n_hidden)), dtype = theano.config.floatX) | |
84 # `W2` is initialized with `W2_values` which is uniformely sampled | |
85 # from -6./sqrt(n_hidden+n_out) and 6./sqrt(n_hidden+n_out) | |
86 # the output of uniform if converted using asarray to dtype | |
87 # theano.config.floatX so that the code is runable on GPU | |
88 W2_values = numpy.asarray( numpy.random.uniform( | |
89 low = -numpy.sqrt(6./(n_hidden+n_out)), \ | |
90 high= numpy.sqrt(6./(n_hidden+n_out)),\ | |
91 size= (n_hidden, n_out)), dtype = theano.config.floatX) | |
92 | |
93 self.W1 = theano.shared( value = W1_values ) | |
94 self.b1 = theano.shared( value = numpy.zeros((n_hidden,), | |
95 dtype= theano.config.floatX)) | |
96 self.W2 = theano.shared( value = W2_values ) | |
97 self.b2 = theano.shared( value = numpy.zeros((n_out,), | |
98 dtype= theano.config.floatX)) | |
99 | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
100 #include the learning rate in the classifer so |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
101 #we can modify it on the fly when we want |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
102 lr_value=learning_rate |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
103 self.lr=theano.shared(value=lr_value) |
110 | 104 # symbolic expression computing the values of the hidden layer |
105 self.hidden = T.tanh(T.dot(input, self.W1)+ self.b1) | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
106 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
107 |
110 | 108 |
109 # symbolic expression computing the values of the top layer | |
110 self.p_y_given_x= T.nnet.softmax(T.dot(self.hidden, self.W2)+self.b2) | |
111 | |
112 # compute prediction as class whose probability is maximal in | |
113 # symbolic form | |
114 self.y_pred = T.argmax( self.p_y_given_x, axis =1) | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
115 self.y_pred_num = T.argmax( self.p_y_given_x[0:9], axis =1) |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
116 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
117 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
118 |
110 | 119 |
120 # L1 norm ; one regularization option is to enforce L1 norm to | |
121 # be small | |
122 self.L1 = abs(self.W1).sum() + abs(self.W2).sum() | |
123 | |
124 # square of L2 norm ; one regularization option is to enforce | |
125 # square of L2 norm to be small | |
126 self.L2_sqr = (self.W1**2).sum() + (self.W2**2).sum() | |
127 | |
128 | |
129 | |
130 def negative_log_likelihood(self, y): | |
131 """Return the mean of the negative log-likelihood of the prediction | |
132 of this model under a given target distribution. | |
133 | |
134 .. math:: | |
135 | |
136 \frac{1}{|\mathcal{D}|}\mathcal{L} (\theta=\{W,b\}, \mathcal{D}) = | |
137 \frac{1}{|\mathcal{D}|}\sum_{i=0}^{|\mathcal{D}|} \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\ | |
138 \ell (\theta=\{W,b\}, \mathcal{D}) | |
139 | |
140 | |
141 :param y: corresponds to a vector that gives for each example the | |
142 :correct label | |
143 """ | |
144 return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) | |
145 | |
146 | |
147 | |
148 | |
149 def errors(self, y): | |
150 """Return a float representing the number of errors in the minibatch | |
151 over the total number of examples of the minibatch | |
152 """ | |
153 | |
154 # check if y has same dimension of y_pred | |
155 if y.ndim != self.y_pred.ndim: | |
156 raise TypeError('y should have the same shape as self.y_pred', | |
157 ('y', target.type, 'y_pred', self.y_pred.type)) | |
158 # check if y is of the correct datatype | |
159 if y.dtype.startswith('int'): | |
160 # the T.neq operator returns a vector of 0s and 1s, where 1 | |
161 # represents a mistake in prediction | |
162 return T.mean(T.neq(self.y_pred, y)) | |
163 else: | |
164 raise NotImplementedError() | |
165 | |
166 | |
304
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
167 def mlp_full_nist( verbose = 1,\ |
145
8ceaaf812891
changed adaptive lr flag from bool to int for jobman issues
XavierMuller
parents:
143
diff
changeset
|
168 adaptive_lr = 0,\ |
322 | 169 data_set=0,\ |
110 | 170 learning_rate=0.01,\ |
171 L1_reg = 0.00,\ | |
172 L2_reg = 0.0001,\ | |
173 nb_max_exemples=1000000,\ | |
174 batch_size=20,\ | |
322 | 175 nb_hidden = 30,\ |
212
e390b0454515
added classic lr time decay and py code to calculate the error based on a saved model
xaviermuller
parents:
169
diff
changeset
|
176 nb_targets = 62, |
304
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
177 tau=1e6,\ |
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
178 lr_t2_factor=0.5): |
110 | 179 |
180 | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
181 configuration = [learning_rate,nb_max_exemples,nb_hidden,adaptive_lr] |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
182 |
212
e390b0454515
added classic lr time decay and py code to calculate the error based on a saved model
xaviermuller
parents:
169
diff
changeset
|
183 #save initial learning rate if classical adaptive lr is used |
e390b0454515
added classic lr time decay and py code to calculate the error based on a saved model
xaviermuller
parents:
169
diff
changeset
|
184 initial_lr=learning_rate |
323 | 185 max_div_count=3 |
186 | |
212
e390b0454515
added classic lr time decay and py code to calculate the error based on a saved model
xaviermuller
parents:
169
diff
changeset
|
187 |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
188 total_validation_error_list = [] |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
189 total_train_error_list = [] |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
190 learning_rate_list=[] |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
191 best_training_error=float('inf'); |
323 | 192 divergence_flag_list=[] |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
193 |
322 | 194 if data_set==0: |
195 dataset=datasets.nist_all() | |
323 | 196 elif data_set==1: |
197 dataset=datasets.nist_P07() | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
198 |
212
e390b0454515
added classic lr time decay and py code to calculate the error based on a saved model
xaviermuller
parents:
169
diff
changeset
|
199 |
110 | 200 |
201 | |
202 ishape = (32,32) # this is the size of NIST images | |
203 | |
204 # allocate symbolic variables for the data | |
205 x = T.fmatrix() # the data is presented as rasterized images | |
206 y = T.lvector() # the labels are presented as 1D vector of | |
207 # [long int] labels | |
208 | |
322 | 209 |
110 | 210 # construct the logistic regression class |
322 | 211 classifier = MLP( input=x,\ |
110 | 212 n_in=32*32,\ |
213 n_hidden=nb_hidden,\ | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
214 n_out=nb_targets, |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
215 learning_rate=learning_rate) |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
216 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
217 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
218 |
110 | 219 |
220 # the cost we minimize during training is the negative log likelihood of | |
221 # the model plus the regularization terms (L1 and L2); cost is expressed | |
222 # here symbolically | |
223 cost = classifier.negative_log_likelihood(y) \ | |
224 + L1_reg * classifier.L1 \ | |
225 + L2_reg * classifier.L2_sqr | |
226 | |
227 # compiling a theano function that computes the mistakes that are made by | |
228 # the model on a minibatch | |
229 test_model = theano.function([x,y], classifier.errors(y)) | |
230 | |
231 # compute the gradient of cost with respect to theta = (W1, b1, W2, b2) | |
232 g_W1 = T.grad(cost, classifier.W1) | |
233 g_b1 = T.grad(cost, classifier.b1) | |
234 g_W2 = T.grad(cost, classifier.W2) | |
235 g_b2 = T.grad(cost, classifier.b2) | |
236 | |
237 # specify how to update the parameters of the model as a dictionary | |
238 updates = \ | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
239 { classifier.W1: classifier.W1 - classifier.lr*g_W1 \ |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
240 , classifier.b1: classifier.b1 - classifier.lr*g_b1 \ |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
241 , classifier.W2: classifier.W2 - classifier.lr*g_W2 \ |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
242 , classifier.b2: classifier.b2 - classifier.lr*g_b2 } |
110 | 243 |
244 # compiling a theano function `train_model` that returns the cost, but in | |
245 # the same time updates the parameter of the model based on the rules | |
246 # defined in `updates` | |
247 train_model = theano.function([x, y], cost, updates = updates ) | |
322 | 248 |
249 | |
250 | |
110 | 251 |
252 | |
253 | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
254 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
255 |
110 | 256 |
257 #conditions for stopping the adaptation: | |
323 | 258 #1) we have reached nb_max_exemples (this is rounded up to be a multiple of the train size so we always do at least 1 epoch) |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
259 #2) validation error is going up twice in a row(probable overfitting) |
110 | 260 |
261 # This means we no longer stop on slow convergence as low learning rates stopped | |
323 | 262 # too fast but instead we will wait for the valid error going up 3 times in a row |
263 # We save the curb of the validation error so we can always go back to check on it | |
264 # and we save the absolute best model anyway, so we might as well explore | |
265 # a bit when diverging | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
266 |
323 | 267 #approximate number of samples in the nist training set |
322 | 268 #this is just to have a validation frequency |
323 | 269 #roughly proportionnal to the original nist training set |
322 | 270 n_minibatches = 650000/batch_size |
271 | |
272 | |
323 | 273 patience =2*nb_max_exemples/batch_size #in units of minibatch |
110 | 274 validation_frequency = n_minibatches/4 |
275 | |
276 | |
277 | |
278 | |
322 | 279 |
110 | 280 best_validation_loss = float('inf') |
281 best_iter = 0 | |
282 test_score = 0. | |
283 start_time = time.clock() | |
212
e390b0454515
added classic lr time decay and py code to calculate the error based on a saved model
xaviermuller
parents:
169
diff
changeset
|
284 time_n=0 #in unit of exemples |
322 | 285 minibatch_index=0 |
286 epoch=0 | |
287 temp=0 | |
323 | 288 divergence_flag=0 |
322 | 289 |
212
e390b0454515
added classic lr time decay and py code to calculate the error based on a saved model
xaviermuller
parents:
169
diff
changeset
|
290 |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
291 |
304
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
292 if verbose == 1: |
323 | 293 print 'starting training' |
322 | 294 while(minibatch_index*batch_size<nb_max_exemples): |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
295 |
322 | 296 for x, y in dataset.train(batch_size): |
110 | 297 |
323 | 298 #if we are using the classic learning rate deacay, adjust it before training of current mini-batch |
322 | 299 if adaptive_lr==2: |
300 classifier.lr.value = tau*initial_lr/(tau+time_n) | |
301 | |
302 | |
303 #train model | |
304 cost_ij = train_model(x,y) | |
305 | |
306 if (minibatch_index+1) % validation_frequency == 0: | |
307 #save the current learning rate | |
308 learning_rate_list.append(classifier.lr.value) | |
323 | 309 divergence_flag_list.append(divergence_flag) |
322 | 310 |
311 # compute the validation error | |
312 this_validation_loss = 0. | |
313 temp=0 | |
314 for xv,yv in dataset.valid(1): | |
315 # sum up the errors for each minibatch | |
323 | 316 this_validation_loss += test_model(xv,yv) |
322 | 317 temp=temp+1 |
318 # get the average by dividing with the number of minibatches | |
319 this_validation_loss /= temp | |
320 #save the validation loss | |
321 total_validation_error_list.append(this_validation_loss) | |
304
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
322 if verbose == 1: |
322 | 323 print(('epoch %i, minibatch %i, learning rate %f current validation error %f ') % |
324 (epoch, minibatch_index+1,classifier.lr.value, | |
325 this_validation_loss*100.)) | |
326 | |
327 # if we got the best validation score until now | |
328 if this_validation_loss < best_validation_loss: | |
329 # save best validation score and iteration number | |
330 best_validation_loss = this_validation_loss | |
331 best_iter = minibatch_index | |
323 | 332 #reset divergence flag |
333 divergence_flag=0 | |
334 | |
335 #save the best model. Overwrite the current saved best model so | |
336 #we only keep the best | |
337 numpy.savez('best_model.npy', config=configuration, W1=classifier.W1.value, W2=classifier.W2.value, b1=classifier.b1.value,\ | |
338 b2=classifier.b2.value, minibatch_index=minibatch_index) | |
339 | |
322 | 340 # test it on the test set |
341 test_score = 0. | |
342 temp =0 | |
343 for xt,yt in dataset.test(batch_size): | |
344 test_score += test_model(xt,yt) | |
345 temp = temp+1 | |
346 test_score /= temp | |
347 if verbose == 1: | |
348 print(('epoch %i, minibatch %i, test error of best ' | |
349 'model %f %%') % | |
350 (epoch, minibatch_index+1, | |
351 test_score*100.)) | |
352 | |
353 # if the validation error is going up, we are overfitting (or oscillating) | |
323 | 354 # check if we are allowed to continue and if we will adjust the learning rate |
322 | 355 elif this_validation_loss >= best_validation_loss: |
323 | 356 |
357 | |
358 # In non-classic learning rate decay, we modify the weight only when | |
359 # validation error is going up | |
360 if adaptive_lr==1: | |
361 classifier.lr.value=classifier.lr.value*lr_t2_factor | |
362 | |
363 | |
364 #cap the patience so we are allowed to diverge max_div_count times | |
365 #if we are going up max_div_count in a row, we will stop immediatelty by modifying the patience | |
366 divergence_flag = divergence_flag +1 | |
367 | |
368 | |
322 | 369 #calculate the test error at this point and exit |
370 # test it on the test set | |
371 test_score = 0. | |
372 temp=0 | |
373 for xt,yt in dataset.test(batch_size): | |
374 test_score += test_model(xt,yt) | |
375 temp=temp+1 | |
376 test_score /= temp | |
377 if verbose == 1: | |
378 print ' validation error is going up, possibly stopping soon' | |
379 print((' epoch %i, minibatch %i, test error of best ' | |
380 'model %f %%') % | |
381 (epoch, minibatch_index+1, | |
382 test_score*100.)) | |
383 | |
384 | |
385 | |
323 | 386 # check early stop condition |
387 if divergence_flag==max_div_count: | |
388 minibatch_index=nb_max_exemples | |
389 print 'we have diverged, early stopping kicks in' | |
390 break | |
391 | |
392 #check if we have seen enough exemples | |
393 #force one epoch at least | |
394 if epoch>0 and minibatch_index*batch_size>nb_max_exemples: | |
322 | 395 break |
396 | |
397 | |
398 time_n= time_n + batch_size | |
323 | 399 minibatch_index = minibatch_index + 1 |
400 | |
401 # we have finished looping through the training set | |
322 | 402 epoch = epoch+1 |
110 | 403 end_time = time.clock() |
304
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
404 if verbose == 1: |
110 | 405 print(('Optimization complete. Best validation score of %f %% ' |
406 'obtained at iteration %i, with test performance %f %%') % | |
407 (best_validation_loss * 100., best_iter, test_score*100.)) | |
408 print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) | |
322 | 409 print minibatch_index |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
410 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
411 #save the model and the weights |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
412 numpy.savez('model.npy', config=configuration, W1=classifier.W1.value,W2=classifier.W2.value, b1=classifier.b1.value,b2=classifier.b2.value) |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
413 numpy.savez('results.npy',config=configuration,total_train_error_list=total_train_error_list,total_validation_error_list=total_validation_error_list,\ |
323 | 414 learning_rate_list=learning_rate_list, divergence_flag_list=divergence_flag_list) |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
415 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
416 return (best_training_error*100.0,best_validation_loss * 100.,test_score*100.,best_iter*batch_size,(end_time-start_time)/60) |
110 | 417 |
418 | |
419 if __name__ == '__main__': | |
420 mlp_full_mnist() | |
421 | |
422 def jobman_mlp_full_nist(state,channel): | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
423 (train_error,validation_error,test_error,nb_exemples,time)=mlp_full_nist(learning_rate=state.learning_rate,\ |
304
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
424 nb_max_exemples=state.nb_max_exemples,\ |
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
425 nb_hidden=state.nb_hidden,\ |
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
426 adaptive_lr=state.adaptive_lr,\ |
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
427 tau=state.tau,\ |
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
428 verbose = state.verbose,\ |
324 | 429 lr_t2_factor=state.lr_t2_factor, |
323 | 430 data_set=state.data_set) |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
431 state.train_error=train_error |
110 | 432 state.validation_error=validation_error |
433 state.test_error=test_error | |
434 state.nb_exemples=nb_exemples | |
435 state.time=time | |
304
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
436 pylearn.version.record_versions(state,[theano,ift6266,pylearn]) |
110 | 437 return channel.COMPLETE |
438 | |
439 |