annotate deep/stacked_dae/old/stacked_dae.py @ 505:a41a8925be70

merge
author Dumitru Erhan <dumitru.erhan@gmail.com>
date Tue, 01 Jun 2010 10:55:08 -0700
parents c8fe09a65039
children
rev   line source
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
1 #!/usr/bin/python
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
2 # coding: utf-8
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
3
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
4 import numpy
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
5 import theano
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
6 import time
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
7 import theano.tensor as T
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
8 from theano.tensor.shared_randomstreams import RandomStreams
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
9 import copy
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
10
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
11 from utils import update_locals
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
12
192
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
13 # taken from LeDeepNet/daa.py
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
14 # has a special case when taking log(0) (defined =0)
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
15 # modified to not take the mean anymore
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
16 from theano.tensor.xlogx import xlogx, xlogy0
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
17 # it's target*log(output)
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
18 def binary_cross_entropy(target, output, sum_axis=1):
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
19 XE = xlogy0(target, output) + xlogy0((1 - target), (1 - output))
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
20 return -T.sum(XE, axis=sum_axis)
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
21
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
22 class LogisticRegression(object):
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
23 def __init__(self, input, n_in, n_out):
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
24 # initialize with 0 the weights W as a matrix of shape (n_in, n_out)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
25 self.W = theano.shared( value=numpy.zeros((n_in,n_out),
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
26 dtype = theano.config.floatX) )
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
27 # initialize the baises b as a vector of n_out 0s
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
28 self.b = theano.shared( value=numpy.zeros((n_out,),
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
29 dtype = theano.config.floatX) )
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
30 # compute vector of class-membership probabilities in symbolic form
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
31 self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
32
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
33 # compute prediction as class whose probability is maximal in
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
34 # symbolic form
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
35 self.y_pred=T.argmax(self.p_y_given_x, axis=1)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
36
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
37 # list of parameters for this layer
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
38 self.params = [self.W, self.b]
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
39
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
40 def negative_log_likelihood(self, y):
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
41 return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y])
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
42
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
43 def errors(self, y):
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
44 # check if y has same dimension of y_pred
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
45 if y.ndim != self.y_pred.ndim:
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
46 raise TypeError('y should have the same shape as self.y_pred',
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
47 ('y', target.type, 'y_pred', self.y_pred.type))
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
48
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
49 # check if y is of the correct datatype
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
50 if y.dtype.startswith('int'):
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
51 # the T.neq operator returns a vector of 0s and 1s, where 1
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
52 # represents a mistake in prediction
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
53 return T.mean(T.neq(self.y_pred, y))
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
54 else:
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
55 raise NotImplementedError()
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
56
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
57
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
58 class SigmoidalLayer(object):
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
59 def __init__(self, rng, input, n_in, n_out):
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
60 self.input = input
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
61
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
62 W_values = numpy.asarray( rng.uniform( \
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
63 low = -numpy.sqrt(6./(n_in+n_out)), \
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
64 high = numpy.sqrt(6./(n_in+n_out)), \
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
65 size = (n_in, n_out)), dtype = theano.config.floatX)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
66 self.W = theano.shared(value = W_values)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
67
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
68 b_values = numpy.zeros((n_out,), dtype= theano.config.floatX)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
69 self.b = theano.shared(value= b_values)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
70
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
71 self.output = T.nnet.sigmoid(T.dot(input, self.W) + self.b)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
72 self.params = [self.W, self.b]
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
73
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
74
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
75
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
76 class dA(object):
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
77 def __init__(self, n_visible= 784, n_hidden= 500, corruption_level = 0.1,\
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
78 input = None, shared_W = None, shared_b = None):
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
79 self.n_visible = n_visible
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
80 self.n_hidden = n_hidden
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
81
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
82 # create a Theano random generator that gives symbolic random values
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
83 theano_rng = RandomStreams()
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
84
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
85 if shared_W != None and shared_b != None :
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
86 self.W = shared_W
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
87 self.b = shared_b
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
88 else:
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
89 # initial values for weights and biases
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
90 # note : W' was written as `W_prime` and b' as `b_prime`
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
91
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
92 # W is initialized with `initial_W` which is uniformely sampled
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
93 # from -6./sqrt(n_visible+n_hidden) and 6./sqrt(n_hidden+n_visible)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
94 # the output of uniform if converted using asarray to dtype
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
95 # theano.config.floatX so that the code is runable on GPU
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
96 initial_W = numpy.asarray( numpy.random.uniform( \
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
97 low = -numpy.sqrt(6./(n_hidden+n_visible)), \
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
98 high = numpy.sqrt(6./(n_hidden+n_visible)), \
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
99 size = (n_visible, n_hidden)), dtype = theano.config.floatX)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
100 initial_b = numpy.zeros(n_hidden, dtype = theano.config.floatX)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
101
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
102
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
103 # theano shared variables for weights and biases
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
104 self.W = theano.shared(value = initial_W, name = "W")
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
105 self.b = theano.shared(value = initial_b, name = "b")
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
106
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
107
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
108 initial_b_prime= numpy.zeros(n_visible)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
109 # tied weights, therefore W_prime is W transpose
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
110 self.W_prime = self.W.T
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
111 self.b_prime = theano.shared(value = initial_b_prime, name = "b'")
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
112
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
113 # if no input is given, generate a variable representing the input
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
114 if input == None :
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
115 # we use a matrix because we expect a minibatch of several examples,
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
116 # each example being a row
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
117 self.x = T.dmatrix(name = 'input')
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
118 else:
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
119 self.x = input
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
120 # Equation (1)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
121 # keep 90% of the inputs the same and zero-out randomly selected subset of 10% of the inputs
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
122 # note : first argument of theano.rng.binomial is the shape(size) of
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
123 # random numbers that it should produce
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
124 # second argument is the number of trials
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
125 # third argument is the probability of success of any trial
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
126 #
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
127 # this will produce an array of 0s and 1s where 1 has a
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
128 # probability of 1 - ``corruption_level`` and 0 with
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
129 # ``corruption_level``
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
130 self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level) * self.x
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
131 # Equation (2)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
132 # note : y is stored as an attribute of the class so that it can be
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
133 # used later when stacking dAs.
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
134 self.y = T.nnet.sigmoid(T.dot(self.tilde_x, self.W ) + self.b)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
135 # Equation (3)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
136 self.z = T.nnet.sigmoid(T.dot(self.y, self.W_prime) + self.b_prime)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
137 # Equation (4)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
138 # note : we sum over the size of a datapoint; if we are using minibatches,
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
139 # L will be a vector, with one entry per example in minibatch
192
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
140 #self.L = - T.sum( self.x*T.log(self.z) + (1-self.x)*T.log(1-self.z), axis=1 )
204
e1f5f66dd7dd Changé le coût de reconstruction pour stabilité numérique, en ajoutant une petite constante dans le log.
fsavard
parents: 192
diff changeset
141 #self.L = binary_cross_entropy(target=self.x, output=self.z, sum_axis=1)
e1f5f66dd7dd Changé le coût de reconstruction pour stabilité numérique, en ajoutant une petite constante dans le log.
fsavard
parents: 192
diff changeset
142
208
acb942530923 Completely rewrote my series module, now based on HDF5 and PyTables (in a separate directory called 'tables_series' for retrocompatibility of running code). Minor (inconsequential) changes to stacked_dae.
fsavard
parents: 204
diff changeset
143 # bypassing z to avoid running to log(0)
acb942530923 Completely rewrote my series module, now based on HDF5 and PyTables (in a separate directory called 'tables_series' for retrocompatibility of running code). Minor (inconsequential) changes to stacked_dae.
fsavard
parents: 204
diff changeset
144 #self.z_a = T.dot(self.y, self.W_prime) + self.b_prime)
acb942530923 Completely rewrote my series module, now based on HDF5 and PyTables (in a separate directory called 'tables_series' for retrocompatibility of running code). Minor (inconsequential) changes to stacked_dae.
fsavard
parents: 204
diff changeset
145 #self.L = -T.sum( self.x * (T.log(1)-T.log(1+T.exp(-self.z_a))) \
acb942530923 Completely rewrote my series module, now based on HDF5 and PyTables (in a separate directory called 'tables_series' for retrocompatibility of running code). Minor (inconsequential) changes to stacked_dae.
fsavard
parents: 204
diff changeset
146 # + (1.0-self.x) * (T.log(1)-T.log(1+T.exp(-self.z_a))), axis=1 )
acb942530923 Completely rewrote my series module, now based on HDF5 and PyTables (in a separate directory called 'tables_series' for retrocompatibility of running code). Minor (inconsequential) changes to stacked_dae.
fsavard
parents: 204
diff changeset
147
204
e1f5f66dd7dd Changé le coût de reconstruction pour stabilité numérique, en ajoutant une petite constante dans le log.
fsavard
parents: 192
diff changeset
148 # I added this epsilon to avoid getting log(0) and 1/0 in grad
e1f5f66dd7dd Changé le coût de reconstruction pour stabilité numérique, en ajoutant une petite constante dans le log.
fsavard
parents: 192
diff changeset
149 # This means conceptually that there'd be no probability of 0, but that
e1f5f66dd7dd Changé le coût de reconstruction pour stabilité numérique, en ajoutant une petite constante dans le log.
fsavard
parents: 192
diff changeset
150 # doesn't seem to me as important (maybe I'm wrong?).
e1f5f66dd7dd Changé le coût de reconstruction pour stabilité numérique, en ajoutant une petite constante dans le log.
fsavard
parents: 192
diff changeset
151 eps = 0.00000001
e1f5f66dd7dd Changé le coût de reconstruction pour stabilité numérique, en ajoutant une petite constante dans le log.
fsavard
parents: 192
diff changeset
152 eps_1 = 1-eps
e1f5f66dd7dd Changé le coût de reconstruction pour stabilité numérique, en ajoutant une petite constante dans le log.
fsavard
parents: 192
diff changeset
153 self.L = - T.sum( self.x * T.log(eps + eps_1*self.z) \
e1f5f66dd7dd Changé le coût de reconstruction pour stabilité numérique, en ajoutant une petite constante dans le log.
fsavard
parents: 192
diff changeset
154 + (1-self.x)*T.log(eps + eps_1*(1-self.z)), axis=1 )
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
155 # note : L is now a vector, where each element is the cross-entropy cost
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
156 # of the reconstruction of the corresponding example of the
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
157 # minibatch. We need to compute the average of all these to get
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
158 # the cost of the minibatch
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
159 self.cost = T.mean(self.L)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
160
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
161 self.params = [ self.W, self.b, self.b_prime ]
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
162
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
163
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
164 class SdA(object):
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
165 def __init__(self, train_set_x, train_set_y, batch_size, n_ins,
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
166 hidden_layers_sizes, n_outs,
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
167 corruption_levels, rng, pretrain_lr, finetune_lr, input_divider=1.0):
185
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
168 # Just to make sure those are not modified somewhere else afterwards
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
169 hidden_layers_sizes = copy.deepcopy(hidden_layers_sizes)
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
170 corruption_levels = copy.deepcopy(corruption_levels)
191
3632e6258642 Ajouts mineurs à stacked_dae, juste printé l'heure je crois.
fsavard
parents: 186
diff changeset
171
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
172 update_locals(self, locals())
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
173
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
174 self.layers = []
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
175 self.pretrain_functions = []
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
176 self.params = []
186
d364a130b221 Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents: 185
diff changeset
177 # MODIF: added this so we also get the b_primes
d364a130b221 Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents: 185
diff changeset
178 # (not used for finetuning... still using ".params")
d364a130b221 Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents: 185
diff changeset
179 self.all_params = []
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
180 self.n_layers = len(hidden_layers_sizes)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
181
192
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
182 print "Creating SdA with params:"
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
183 print "batch_size", batch_size
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
184 print "hidden_layers_sizes", hidden_layers_sizes
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
185 print "corruption_levels", corruption_levels
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
186 print "n_ins", n_ins
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
187 print "n_outs", n_outs
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
188 print "pretrain_lr", pretrain_lr
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
189 print "finetune_lr", finetune_lr
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
190 print "input_divider", input_divider
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
191 print "----"
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
192
186
d364a130b221 Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents: 185
diff changeset
193 self.shared_divider = theano.shared(numpy.asarray(input_divider, dtype=theano.config.floatX))
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
194
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
195 if len(hidden_layers_sizes) < 1 :
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
196 raiseException (' You must have at least one hidden layer ')
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
197
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
198
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
199 # allocate symbolic variables for the data
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
200 index = T.lscalar() # index to a [mini]batch
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
201 self.x = T.matrix('x') # the data is presented as rasterized images
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
202 self.y = T.ivector('y') # the labels are presented as 1D vector of
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
203 # [int] labels
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
204
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
205 for i in xrange( self.n_layers ):
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
206 # construct the sigmoidal layer
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
207
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
208 # the size of the input is either the number of hidden units of
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
209 # the layer below or the input size if we are on the first layer
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
210 if i == 0 :
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
211 input_size = n_ins
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
212 else:
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
213 input_size = hidden_layers_sizes[i-1]
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
214
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
215 # the input to this layer is either the activation of the hidden
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
216 # layer below or the input of the SdA if you are on the first
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
217 # layer
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
218 if i == 0 :
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
219 layer_input = self.x
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
220 else:
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
221 layer_input = self.layers[-1].output
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
222
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
223 layer = SigmoidalLayer(rng, layer_input, input_size,
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
224 hidden_layers_sizes[i] )
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
225 # add the layer to the
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
226 self.layers += [layer]
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
227 self.params += layer.params
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
228
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
229 # Construct a denoising autoencoder that shared weights with this
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
230 # layer
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
231 dA_layer = dA(input_size, hidden_layers_sizes[i], \
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
232 corruption_level = corruption_levels[0],\
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
233 input = layer_input, \
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
234 shared_W = layer.W, shared_b = layer.b)
186
d364a130b221 Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents: 185
diff changeset
235
d364a130b221 Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents: 185
diff changeset
236 self.all_params += dA_layer.params
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
237
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
238 # Construct a function that trains this dA
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
239 # compute gradients of layer parameters
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
240 gparams = T.grad(dA_layer.cost, dA_layer.params)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
241 # compute the list of updates
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
242 updates = {}
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
243 for param, gparam in zip(dA_layer.params, gparams):
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
244 updates[param] = param - gparam * pretrain_lr
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
245
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
246 # create a function that trains the dA
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
247 update_fn = theano.function([index], dA_layer.cost, \
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
248 updates = updates,
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
249 givens = {
186
d364a130b221 Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents: 185
diff changeset
250 self.x : train_set_x[index*batch_size:(index+1)*batch_size] / self.shared_divider})
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
251 # collect this function into a list
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
252 self.pretrain_functions += [update_fn]
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
253
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
254
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
255 # We now need to add a logistic layer on top of the MLP
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
256 self.logLayer = LogisticRegression(\
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
257 input = self.layers[-1].output,\
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
258 n_in = hidden_layers_sizes[-1], n_out = n_outs)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
259
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
260 self.params += self.logLayer.params
186
d364a130b221 Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents: 185
diff changeset
261 self.all_params += self.logLayer.params
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
262 # construct a function that implements one step of finetunining
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
263
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
264 # compute the cost, defined as the negative log likelihood
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
265 cost = self.logLayer.negative_log_likelihood(self.y)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
266 # compute the gradients with respect to the model parameters
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
267 gparams = T.grad(cost, self.params)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
268 # compute list of updates
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
269 updates = {}
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
270 for param,gparam in zip(self.params, gparams):
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
271 updates[param] = param - gparam*finetune_lr
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
272
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
273 self.finetune = theano.function([index], cost,
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
274 updates = updates,
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
275 givens = {
186
d364a130b221 Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents: 185
diff changeset
276 self.x : train_set_x[index*batch_size:(index+1)*batch_size]/self.shared_divider,
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
277 self.y : train_set_y[index*batch_size:(index+1)*batch_size]} )
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
278
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
279 # symbolic variable that points to the number of errors made on the
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
280 # minibatch given by self.x and self.y
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
281
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
282 self.errors = self.logLayer.errors(self.y)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
283
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
284 if __name__ == '__main__':
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
285 import sys
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
286 args = sys.argv[1:]
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
287