annotate deep/stacked_dae/v_sylvain/sgd_optimization.py @ 238:9fc641d7adda

Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
author SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
date Mon, 15 Mar 2010 13:22:20 -0400
parents ecb69e17950b
children 7dd43ef66d15
rev   line source
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
1 #!/usr/bin/python
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
2 # coding: utf-8
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
3
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
4 # Generic SdA optimization loop, adapted from the deeplearning.net tutorial
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
5
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
6 import numpy
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
7 import theano
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
8 import time
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
9 import datetime
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
10 import theano.tensor as T
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
11 import sys
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
12
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
13 from jobman import DD
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
14 import jobman, jobman.sql
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
15
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
16 from stacked_dae import SdA
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
17
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
18 from ift6266.utils.seriestables import *
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
19
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
20 ##def shared_dataset(data_xy):
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
21 ## data_x, data_y = data_xy
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
22 ## if theano.config.device.startswith("gpu"):
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
23 ## print "TRANSFERING DATASETS (via shared()) TO GPU"
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
24 ## shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX))
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
25 ## shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX))
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
26 ## shared_y = T.cast(shared_y, 'int32')
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
27 ## else:
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
28 ## print "WILL RUN ON CPU, NOT GPU, SO DATASETS REMAIN IN BYTES"
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
29 ## shared_x = theano.shared(data_x)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
30 ## shared_y = theano.shared(data_y)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
31 ## return shared_x, shared_y
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
32
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
33 ######Les shared seront remplacees utilisant "given" dans les enonces de fonction plus loin
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
34 def shared_dataset(batch_size, n_in):
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
35
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
36 shared_x = theano.shared(numpy.asarray(numpy.zeros((batch_size,n_in)), dtype=theano.config.floatX))
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
37 shared_y = theano.shared(numpy.asarray(numpy.zeros(batch_size), dtype=theano.config.floatX))
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
38 return shared_x, shared_y
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
39
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
40 default_series = { \
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
41 'reconstruction_error' : DummySeries(),
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
42 'training_error' : DummySeries(),
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
43 'validation_error' : DummySeries(),
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
44 'test_error' : DummySeries(),
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
45 'params' : DummySeries()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
46 }
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
47
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
48 class SdaSgdOptimizer:
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
49 def __init__(self, dataset, hyperparameters, n_ins, n_outs, input_divider=1.0, series=default_series):
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
50 self.dataset = dataset
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
51 self.hp = hyperparameters
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
52 self.n_ins = n_ins
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
53 self.n_outs = n_outs
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
54 self.input_divider = input_divider
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
55
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
56 self.series = series
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
57
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
58 self.rng = numpy.random.RandomState(1234)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
59
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
60 self.init_datasets()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
61 self.init_classifier()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
62
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
63 sys.stdout.flush()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
64
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
65 def init_datasets(self):
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
66 print "init_datasets"
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
67 sys.stdout.flush()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
68
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
69 #train_set, valid_set, test_set = self.dataset
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
70 self.test_set_x, self.test_set_y = shared_dataset(self.hp.minibatch_size,self.n_ins)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
71 self.valid_set_x, self.valid_set_y = shared_dataset(self.hp.minibatch_size,self.n_ins)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
72 self.train_set_x, self.train_set_y = shared_dataset(self.hp.minibatch_size,self.n_ins)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
73
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
74 # compute number of minibatches for training, validation and testing
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
75 self.n_train_batches = self.train_set_x.value.shape[0] / self.hp.minibatch_size
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
76 self.n_valid_batches = self.valid_set_x.value.shape[0] / self.hp.minibatch_size
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
77 # remove last batch in case it's incomplete
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
78 self.n_test_batches = (self.test_set_x.value.shape[0] / self.hp.minibatch_size) - 1
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
79
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
80 def init_classifier(self):
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
81 print "Constructing classifier"
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
82
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
83 # we don't want to save arrays in DD objects, so
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
84 # we recreate those arrays here
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
85 nhl = self.hp.num_hidden_layers
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
86 layers_sizes = [self.hp.hidden_layers_sizes] * nhl
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
87 corruption_levels = [self.hp.corruption_levels] * nhl
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
88
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
89 # construct the stacked denoising autoencoder class
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
90 self.classifier = SdA( \
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
91 train_set_x= self.train_set_x, \
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
92 train_set_y = self.train_set_y,\
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
93 batch_size = self.hp.minibatch_size, \
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
94 n_ins= self.n_ins, \
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
95 hidden_layers_sizes = layers_sizes, \
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
96 n_outs = self.n_outs, \
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
97 corruption_levels = corruption_levels,\
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
98 rng = self.rng,\
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
99 pretrain_lr = self.hp.pretraining_lr, \
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
100 finetune_lr = self.hp.finetuning_lr,\
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
101 input_divider = self.input_divider )
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
102
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
103 #theano.printing.pydotprint(self.classifier.pretrain_functions[0], "function.graph")
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
104
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
105 sys.stdout.flush()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
106
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
107 def train(self):
233
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
108 self.pretrain(self.dataset)
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
109 self.finetune(self.dataset)
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
110
238
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
111 def pretrain(self,dataset,reduce):
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
112 print "STARTING PRETRAINING, time = ", datetime.datetime.now()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
113 sys.stdout.flush()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
114
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
115 start_time = time.clock()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
116 ## Pre-train layer-wise
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
117 for i in xrange(self.classifier.n_layers):
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
118 # go through pretraining epochs
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
119 for epoch in xrange(self.hp.pretraining_epochs_per_layer):
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
120 # go through the training set
235
ecb69e17950b correction de bugs
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 233
diff changeset
121 batch_index=int(0)
233
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
122 for x,y in dataset.train(self.hp.minibatch_size):
238
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
123 batch_index+=1
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
124 if batch_index > reduce: #If maximum number of mini-batch is used
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
125 break
233
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
126 c = self.classifier.pretrain_functions[i](x)
238
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
127
235
ecb69e17950b correction de bugs
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 233
diff changeset
128
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
129 self.series["reconstruction_error"].append((epoch, batch_index), c)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
130
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
131 print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
132 sys.stdout.flush()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
133
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
134 self.series['params'].append((epoch,), self.classifier.all_params)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
135
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
136 end_time = time.clock()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
137
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
138 print ('Pretraining took %f minutes' %((end_time-start_time)/60.))
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
139 self.hp.update({'pretraining_time': end_time-start_time})
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
140
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
141 sys.stdout.flush()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
142
238
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
143 def finetune(self,dataset,reduce):
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
144 print "STARTING FINETUNING, time = ", datetime.datetime.now()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
145
233
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
146 #index = T.lscalar() # index to a [mini]batch
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
147 minibatch_size = self.hp.minibatch_size
235
ecb69e17950b correction de bugs
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 233
diff changeset
148 ensemble_x = T.matrix('ensemble_x')
ecb69e17950b correction de bugs
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 233
diff changeset
149 ensemble_y = T.ivector('ensemble_y')
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
150
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
151 # create a function to compute the mistakes that are made by the model
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
152 # on the validation set, or testing set
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
153 shared_divider = theano.shared(numpy.asarray(self.input_divider, dtype=theano.config.floatX))
233
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
154 test_model = theano.function([ensemble_x,ensemble_y], self.classifier.errors,
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
155 givens = {
233
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
156 #self.classifier.x: self.test_set_x[index*minibatch_size:(index+1)*minibatch_size] / shared_divider,
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
157 #self.classifier.y: self.test_set_y[index*minibatch_size:(index+1)*minibatch_size]})
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
158 self.classifier.x: ensemble_x,
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
159 self.classifier.y: ensemble_y})
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
160
233
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
161 validate_model = theano.function([ensemble_x,ensemble_y], self.classifier.errors,
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
162 givens = {
233
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
163 #self.classifier.x: self.valid_set_x[index*minibatch_size:(index+1)*minibatch_size] / shared_divider,
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
164 #self.classifier.y: self.valid_set_y[index*minibatch_size:(index+1)*minibatch_size]})
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
165 self.classifier.x: ensemble_x,
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
166 self.classifier.y: ensemble_y})
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
167
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
168
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
169 # early-stopping parameters
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
170 patience = 10000 # look as this many examples regardless
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
171 patience_increase = 2. # wait this much longer when a new best is
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
172 # found
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
173 improvement_threshold = 0.995 # a relative improvement of this much is
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
174 # considered significant
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
175 validation_frequency = min(self.n_train_batches, patience/2)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
176 # go through this many
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
177 # minibatche before checking the network
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
178 # on the validation set; in this case we
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
179 # check every epoch
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
180
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
181 best_params = None
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
182 best_validation_loss = float('inf')
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
183 test_score = 0.
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
184 start_time = time.clock()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
185
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
186 done_looping = False
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
187 epoch = 0
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
188
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
189 while (epoch < self.hp.max_finetuning_epochs) and (not done_looping):
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
190 epoch = epoch + 1
238
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
191 minibatch_index=int(0)
233
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
192 for x,y in dataset.train(minibatch_size):
238
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
193 minibatch_index +=1
233
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
194
238
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
195 if minibatch_index > reduce: #If maximum number of mini-batchs is used
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
196 break
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
197
233
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
198 cost_ij = self.classifier.finetune(x,y)
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
199 iter = epoch * self.n_train_batches + minibatch_index
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
200
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
201 self.series["training_error"].append((epoch, minibatch_index), cost_ij)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
202
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
203 if (iter+1) % validation_frequency == 0:
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
204
238
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
205 #validation_losses = [validate_model(x,y) for x,y in dataset.valid(minibatch_size)]
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
206 test_index=int(0)
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
207 validation_losses=[]
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
208 for x,y in dataset.valid(minibatch_size):
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
209 test_index+=1
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
210 if test_index > reduce:
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
211 break
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
212 validation_losses.append(validate_model(x,y))
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
213 this_validation_loss = numpy.mean(validation_losses)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
214
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
215 self.series["validation_error"].\
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
216 append((epoch, minibatch_index), this_validation_loss*100.)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
217
238
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
218 print('epoch %i, minibatch %i, validation error %f %%' % \
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
219 (epoch, minibatch_index, \
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
220 this_validation_loss*100.))
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
221
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
222
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
223 # if we got the best validation score until now
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
224 if this_validation_loss < best_validation_loss:
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
225
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
226 #improve patience if loss improvement is good enough
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
227 if this_validation_loss < best_validation_loss * \
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
228 improvement_threshold :
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
229 patience = max(patience, iter * patience_increase)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
231 # save best validation score and iteration number
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
232 best_validation_loss = this_validation_loss
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
233 best_iter = iter
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
234
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
235 # test it on the test set
238
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
236 #test_losses = [test_model(x,y) for x,y in dataset.test(minibatch_size)]
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
237 test_losses=[]
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
238 i=0
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
239 for x,y in dataset.test(minibatch_size):
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
240 i+=1
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
241 if i > reduce:
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
242 break
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
243 test_losses.append(test_model(x,y))
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
244 test_score = numpy.mean(test_losses)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
245
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
246 self.series["test_error"].\
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
247 append((epoch, minibatch_index), test_score*100.)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
248
238
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
249 print((' epoch %i, minibatch %i, test error of best '
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
250 'model %f %%') %
238
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
251 (epoch, minibatch_index,
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
252 test_score*100.))
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
253
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
254 sys.stdout.flush()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
255
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
256 self.series['params'].append((epoch,), self.classifier.all_params)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
257
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
258 if patience <= iter :
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
259 done_looping = True
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
260 break
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
261
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
262 end_time = time.clock()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
263 self.hp.update({'finetuning_time':end_time-start_time,\
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
264 'best_validation_error':best_validation_loss,\
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
265 'test_score':test_score,
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
266 'num_finetuning_epochs':epoch})
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
267
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
268 print(('Optimization complete with best validation score of %f %%,'
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
269 'with test performance %f %%') %
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
270 (best_validation_loss * 100., test_score*100.))
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
271 print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.))
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
272
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
273
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
274