annotate writeup/nips_reviews.txt @ 580:83da863b924d

minor
author Yoshua Bengio <bengioy@iro.umontreal.ca>
date Sun, 08 Aug 2010 13:41:46 -0400
parents f4b95749ffba
children
rev   line source
570
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
1
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
2 Reviews For Paper
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
3 Paper ID 249
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
4 Title Deep Self-Taught Learning for Handwritten Character Recognition
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
5 Masked Reviewer ID: Assigned_Reviewer_1
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
6 Review:
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
7 Question
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
8 Comments to author(s). First provide a summary of the paper, and then address the following criteria: Quality, clarity, originality and significance. (For detailed reviewing guidelines, see http://nips.cc/PaperInformation/ReviewerInstructions) The authors apply self-taught learning to various deep learners for the purpose of handwritten character recognition. They construct new datasets that are larger and contain more (artificial) noise than the standard NIST, and show that the successful performance of previous models can be replicated on these datasets. They show that training with out-of-distribution samples (either perturbed or from other classes) improves the performance of deep learners, and does so more than for a shallow learner.
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
9
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
10 The paper is well-written and the contributions are presented clearly. However, this paper only presents the results established methods to an application that is already essentially solved. While the experiments were run thoroughly and engineered well, the results are not intended to compete with the state-of-the-art, so this is not an application paper. While the main conclusion -- that self-taught learning helps deep learners -- is somewhat interesting, it is not shown to apply generally, and even so is not significant enough to merit acceptance since both the models and self-taught learning methods have been previously shown to be useful (albeit separately).
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
11
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
12 Because the experiments were run well, the new datasets are useful contributions, and the demonstration that self-taught learning can help deep learners is helpful, it would be good for other researchers to see this work. It would be appropriate for a workshop or technical report, or as part of a review or survey paper.
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
13 Please summarize your review in 1-2 sentences Since there is no technical or methodological contribution, this paper should not be accepted to this conference.
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
14 Masked Reviewer ID: Assigned_Reviewer_4
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
15 Review:
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
16 Question
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
17 Comments to author(s). First provide a summary of the paper, and then address the following criteria: Quality, clarity, originality and significance. (For detailed reviewing guidelines, see http://nips.cc/PaperInformation/ReviewerInstructions) The paper presents an empirical study that tries to assess whether current models with deep architectures can benefit from out-of-distribution samples (i.e. unlabeled data that may come from other distributions). In particular, the paper concentrates on the task of classifying handwritten characters, where some the training "out-of-distribution" samples are generated using translation. slant, as well as different noise models.
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
18
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
19 The paper makes two contributions. First, the authors show that deep learners work well on a much larger task: 800,000 samples from 62 classes. And second, it is empirically observed that deep models benefit from additional unlabeled data that may come from a "somewhat" different distribution (i.e. perturbed characters). Finally, empirically, deep models benefit more from out-of-distribution examples compared to shallow learners.
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
20
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
21 Much of the deep learning research has not gone much into solving multi-task or transfer learning problems and I welcome such research. In particular, the authors show that training using a large number of classes (English letters and digits) and using various distorted images, improves model performance of deep learners when testing for a specific task (i.e. testing only on 10 digits classes).
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
22
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
23 Another interesting observation is that deep learners benefit more from multi-task learning compared to shallow multi-layer perceptrons. It would also be interesting to compare to SVMs that are built incrementally, i.e. fit SVMs using a subset of data, retain support vectors, add more data, etc. This would better justify empirical findings.
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
24
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
25 While the paper is mostly empirical, it would be helpful to provide some theoretical analysis. It would be interesting to work out under what conditions one would expect deep models to benefit from out-of-distribution examples (obviously if the distribution of those examples is very different, it would naturally hurt model performance), or when one would expect deep models to benefit more from multi-task setting compared to shallow learners.
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
26
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
27 Please summarize your review in 1-2 sentences The paper is mostly well-written and provides an extensive empirical study showing that model with deep architectures can benefit from self-taught learning setting.
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
28 Masked Reviewer ID: Assigned_Reviewer_5
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
29 Review:
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
30 Question
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
31 Comments to author(s). First provide a summary of the paper, and then address the following criteria: Quality, clarity, originality and significance. (For detailed reviewing guidelines, see http://nips.cc/PaperInformation/ReviewerInstructions) In this manuscript, the authors describe the use of a deep-architecture perceptron to perform handwritten character recognition (where "deep" in this case denotes the use of three hidden layers). The authors introduce a detailed set of random perturbation (i.e. noise-adding) procedures specific to the problem of character classification, and show that these work well in conjunction with stacked denoising autoencoders (SDAs) for the application at hand. The authors consider larger data sets and larger numbers of categories than in previous character recognition studies, and show that their system achieves a classification accuracy that is competitive with human performance on the same task. They address several key questions about the use of deep architectures and self-learning / multitask learning, and introduce hypotheses that suggest directions for future work.
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
32
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
33 Quality - The paper is technically sound. The only possible technical shortcomings I see are (1) that the authors seem to equate unsupervised learning with either the addition of noise to training examples, or the use of untested categories (i.e., multi-task learning); it might be useful to also quantify the improvement seen when the SDAs are applied with unlabeled data (without added noise, and without superfluous categories). It is also not completely clear in the setup which (fraction of) data is labeled, which not, and how it is used in training. For instance, NIST comes with annotations, so are all distorted images assumed to belong to the same class, etc.
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
34
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
35 And (2) I'm not sure how accurately the scores from Amazon Mechanical Turks (AMT) indicate human-level performance, since human errors may be present either in the AMT predictions or in the original hand-curation of the labeled test data.
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
36
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
37 Clarity - The paper is fairly clearly written, with a few spelling and grammatical errors. Most importantly, the description of the SDA training could be improved and expanded to aid non-specialist readers. (In order to understand the training approach I had to read several of the cited papers). Shortening section 2 (possibly relegating details such as parameter ranges to the supplement) should free up enough space to add a gentle introduction to deep learning with SDAs, which makes it clear that the purpose of deep learning is to induce hierarchical features from raw data via unsupervised methods (it was not made explicit in the manuscript that the input features were (I presume) the raw pixel values of the character images). Note that the authors do cite a supplement, but I did not have access to it.
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
38 Finally, the distinction between semi-supervised and self-taught learning should be better explained.
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
39
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
40 Originality - The main contributions of the manuscript is a well-organized evaluation of previously described approaches to assess the benefits of deep learning -- the use of larger data sets (including larger numbers of categories), the framework of image transformations to generate appropriate larger sets for self-taught learning, and the results showing performance comparable to that of humans. The main theoretical result seems to be that adding noise to training examples and/or including categories during training that are not used during testing (i.e., "borrowing strength" via multitask learning) improves classification accuracy even when extremely large numbers of labeled training examples are available. The utility of added noise during training has been well-known for many years, but had previously been thought to result from generalization error induced by bias in the training set (i.e., limited sample sizes), whereas the authors show that the advantage persists even for large sample sizes.
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
41
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
42 Significance - The results of this paper are very good, and the ideas are of importance not only within the specific application of character recognition. One limit is the restriction to MLPs and not other more recent learning approaches.
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
43
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
44 Please summarize your review in 1-2 sentences The manuscript provides results consistent with earlier findings, and introduces a detailed set of noise-adding procedures that work well for the specific task of character recognition. The presentation should be adequately clear to other researchers working on the same task, but could be improved to make the article more accessible to nonspecialists.
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
45 Masked Reviewer ID: Assigned_Reviewer_6
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
46 Review:
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
47 Question
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
48 Comments to author(s). First provide a summary of the paper, and then address the following criteria: Quality, clarity, originality and significance. (For detailed reviewing guidelines, see http://nips.cc/PaperInformation/ReviewerInstructions)
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
49 Summary:
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
50 The paper presents a self-taught learning approach using deep architectures (e.g., stacked denoising autoencoders) for handwritten character recognition. The main idea is to generate out-of-distribution examples of digits and characters via a number of transformations and noise processes. The proposed method is simple, but it demonstrates a very good performance on NIST dataset, achieving the state-of-the-art.
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
51
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
52 Quality:
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
53 The paper appears to be technically sound and provides a number of experiments on large scale datasets.
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
54
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
55 Clarity:
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
56 The paper is clearly written.
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
57
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
58 Originality:
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
59 The novelty of the approach is somewhat marginal since the approach is reminiscent of prior work on character recognition using deformations and transformations. However, this paper shows that it can achieve the state-of-the-art performance via this approach.
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
60
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
61 Significance:
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
62 The paper tries to address a number of interesting questions related to deep learning and multi-task learning. Furthermore, this work can provide a new large scale data benchmark for deep learning (beyond MNIST).
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
63 Please summarize your review in 1-2 sentences The paper tries to address a number of interesting questions related to deep learning and multi-task learning on a large scale handwritten character dataset. Furthermore, the presented method seems to achieve the state-of-the-art.
f4b95749ffba nips_reviews.txt added
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff changeset
64