Mercurial > ift6266
annotate code_tutoriel/mlp.py @ 267:798d1344e6a2
Modifs à nist_sda.py et config.py.example pour corrections viz le mécanisme pour isolation d'expérience
author | fsavard |
---|---|
date | Fri, 19 Mar 2010 11:12:40 -0400 |
parents | 4bc5eeec6394 |
children |
rev | line source |
---|---|
0 | 1 """ |
2 This tutorial introduces the multilayer perceptron using Theano. | |
3 | |
4 A multilayer perceptron is a logistic regressor where | |
5 instead of feeding the input to the logistic regression you insert a | |
6 intermidiate layer, called the hidden layer, that has a nonlinear | |
7 activation function (usually tanh or sigmoid) . One can use many such | |
8 hidden layers making the architecture deep. The tutorial will also tackle | |
9 the problem of MNIST digit classification. | |
10 | |
11 .. math:: | |
12 | |
13 f(x) = G( b^{(2)} + W^{(2)}( s( b^{(1)} + W^{(1)} x))), | |
14 | |
15 References: | |
16 | |
17 - textbooks: "Pattern Recognition and Machine Learning" - | |
18 Christopher M. Bishop, section 5 | |
19 | |
20 """ | |
21 __docformat__ = 'restructedtext en' | |
22 | |
23 | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
24 import numpy, time, cPickle, gzip |
0 | 25 |
26 import theano | |
27 import theano.tensor as T | |
28 | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
29 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
30 from logistic_sgd import LogisticRegression, load_data |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
31 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
32 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
33 class HiddenLayer(object): |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
34 def __init__(self, rng, input, n_in, n_out, activation = T.tanh): |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
35 """ |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
36 Typical hidden layer of a MLP: units are fully-connected and have |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
37 sigmoidal activation function. Weight matrix W is of shape (n_in,n_out) |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
38 and the bias vector b is of shape (n_out,). |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
39 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
40 NOTE : The nonlinearity used here is tanh |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
41 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
42 Hidden unit activation is given by: tanh(dot(input,W) + b) |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
43 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
44 :type rng: numpy.random.RandomState |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
45 :param rng: a random number generator used to initialize weights |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
46 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
47 :type input: theano.tensor.dmatrix |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
48 :param input: a symbolic tensor of shape (n_examples, n_in) |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
49 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
50 :type n_in: int |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
51 :param n_in: dimensionality of input |
0 | 52 |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
53 :type n_out: int |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
54 :param n_out: number of hidden units |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
55 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
56 :type activation: theano.Op or function |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
57 :param activation: Non linearity to be applied in the hidden |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
58 layer |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
59 """ |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
60 self.input = input |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
61 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
62 # `W` is initialized with `W_values` which is uniformely sampled |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
63 # from -6./sqrt(n_in+n_hidden) and 6./sqrt(n_in+n_hidden) |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
64 # the output of uniform if converted using asarray to dtype |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
65 # theano.config.floatX so that the code is runable on GPU |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
66 W_values = numpy.asarray( rng.uniform( \ |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
67 low = -numpy.sqrt(6./(n_in+n_out)), \ |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
68 high = numpy.sqrt(6./(n_in+n_out)), \ |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
69 size = (n_in, n_out)), dtype = theano.config.floatX) |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
70 self.W = theano.shared(value = W_values) |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
71 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
72 b_values = numpy.zeros((n_out,), dtype= theano.config.floatX) |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
73 self.b = theano.shared(value= b_values) |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
74 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
75 self.output = activation(T.dot(input, self.W) + self.b) |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
76 # parameters of the model |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
77 self.params = [self.W, self.b] |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
78 |
0 | 79 |
80 class MLP(object): | |
81 """Multi-Layer Perceptron Class | |
82 | |
83 A multilayer perceptron is a feedforward artificial neural network model | |
84 that has one layer or more of hidden units and nonlinear activations. | |
85 Intermidiate layers usually have as activation function thanh or the | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
86 sigmoid function (defined here by a ``SigmoidalLayer`` class) while the |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
87 top layer is a softamx layer (defined here by a ``LogisticRegression`` |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
88 class). |
0 | 89 """ |
90 | |
91 | |
92 | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
93 def __init__(self, rng, input, n_in, n_hidden, n_out): |
0 | 94 """Initialize the parameters for the multilayer perceptron |
95 | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
96 :type rng: numpy.random.RandomState |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
97 :param rng: a random number generator used to initialize weights |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
98 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
99 :type input: theano.tensor.TensorType |
0 | 100 :param input: symbolic variable that describes the input of the |
101 architecture (one minibatch) | |
102 | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
103 :type n_in: int |
0 | 104 :param n_in: number of input units, the dimension of the space in |
105 which the datapoints lie | |
106 | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
107 :type n_hidden: int |
0 | 108 :param n_hidden: number of hidden units |
109 | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
110 :type n_out: int |
0 | 111 :param n_out: number of output units, the dimension of the space in |
112 which the labels lie | |
113 | |
114 """ | |
115 | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
116 # Since we are dealing with a one hidden layer MLP, this will |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
117 # translate into a TanhLayer connected to the LogisticRegression |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
118 # layer; this can be replaced by a SigmoidalLayer, or a layer |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
119 # implementing any other nonlinearity |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
120 self.hiddenLayer = HiddenLayer(rng = rng, input = input, |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
121 n_in = n_in, n_out = n_hidden, |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
122 activation = T.tanh) |
0 | 123 |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
124 # The logistic regression layer gets as input the hidden units |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
125 # of the hidden layer |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
126 self.logRegressionLayer = LogisticRegression( |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
127 input = self.hiddenLayer.output, |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
128 n_in = n_hidden, |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
129 n_out = n_out) |
0 | 130 |
131 # L1 norm ; one regularization option is to enforce L1 norm to | |
132 # be small | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
133 self.L1 = abs(self.hiddenLayer.W).sum() \ |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
134 + abs(self.logRegressionLayer.W).sum() |
0 | 135 |
136 # square of L2 norm ; one regularization option is to enforce | |
137 # square of L2 norm to be small | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
138 self.L2_sqr = (self.hiddenLayer.W**2).sum() \ |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
139 + (self.logRegressionLayer.W**2).sum() |
0 | 140 |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
141 # negative log likelihood of the MLP is given by the negative |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
142 # log likelihood of the output of the model, computed in the |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
143 # logistic regression layer |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
144 self.negative_log_likelihood = self.logRegressionLayer.negative_log_likelihood |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
145 # same holds for the function computing the number of errors |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
146 self.errors = self.logRegressionLayer.errors |
0 | 147 |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
148 # the parameters of the model are the parameters of the two layer it is |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
149 # made out of |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
150 self.params = self.hiddenLayer.params + self.logRegressionLayer.params |
0 | 151 |
152 | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
153 def test_mlp( learning_rate=0.01, L1_reg = 0.00, L2_reg = 0.0001, n_epochs=1000, |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
154 dataset = 'mnist.pkl.gz'): |
0 | 155 """ |
156 Demonstrate stochastic gradient descent optimization for a multilayer | |
157 perceptron | |
158 | |
159 This is demonstrated on MNIST. | |
160 | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
161 :type learning_rate: float |
0 | 162 :param learning_rate: learning rate used (factor for the stochastic |
163 gradient | |
164 | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
165 :type L1_reg: float |
0 | 166 :param L1_reg: L1-norm's weight when added to the cost (see |
167 regularization) | |
168 | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
169 :type L2_reg: float |
0 | 170 :param L2_reg: L2-norm's weight when added to the cost (see |
171 regularization) | |
2
bcc87d3e33a3
adding latest tutorial code
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
0
diff
changeset
|
172 |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
173 :type n_epochs: int |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
174 :param n_epochs: maximal number of epochs to run the optimizer |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
175 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
176 :type dataset: string |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
177 :param dataset: the path of the MNIST dataset file from |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
178 http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
179 |
2
bcc87d3e33a3
adding latest tutorial code
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
0
diff
changeset
|
180 |
bcc87d3e33a3
adding latest tutorial code
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
0
diff
changeset
|
181 """ |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
182 datasets = load_data(dataset) |
0 | 183 |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
184 train_set_x, train_set_y = datasets[0] |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
185 valid_set_x, valid_set_y = datasets[1] |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
186 test_set_x , test_set_y = datasets[2] |
0 | 187 |
188 | |
189 | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
190 batch_size = 20 # size of the minibatch |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
191 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
192 # compute number of minibatches for training, validation and testing |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
193 n_train_batches = train_set_x.value.shape[0] / batch_size |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
194 n_valid_batches = valid_set_x.value.shape[0] / batch_size |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
195 n_test_batches = test_set_x.value.shape[0] / batch_size |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
196 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
197 ###################### |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
198 # BUILD ACTUAL MODEL # |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
199 ###################### |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
200 print '... building the model' |
0 | 201 |
202 # allocate symbolic variables for the data | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
203 index = T.lscalar() # index to a [mini]batch |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
204 x = T.matrix('x') # the data is presented as rasterized images |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
205 y = T.ivector('y') # the labels are presented as 1D vector of |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
206 # [int] labels |
0 | 207 |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
208 rng = numpy.random.RandomState(1234) |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
209 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
210 # construct the MLP class |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
211 classifier = MLP( rng = rng, input=x, n_in=28*28, n_hidden = 500, n_out=10) |
0 | 212 |
213 # the cost we minimize during training is the negative log likelihood of | |
214 # the model plus the regularization terms (L1 and L2); cost is expressed | |
215 # here symbolically | |
216 cost = classifier.negative_log_likelihood(y) \ | |
217 + L1_reg * classifier.L1 \ | |
218 + L2_reg * classifier.L2_sqr | |
219 | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
220 # compiling a Theano function that computes the mistakes that are made |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
221 # by the model on a minibatch |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
222 test_model = theano.function(inputs = [index], |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
223 outputs = classifier.errors(y), |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
224 givens={ |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
225 x:test_set_x[index*batch_size:(index+1)*batch_size], |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
226 y:test_set_y[index*batch_size:(index+1)*batch_size]}) |
0 | 227 |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
228 validate_model = theano.function(inputs = [index], |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
229 outputs = classifier.errors(y), |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
230 givens={ |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
231 x:valid_set_x[index*batch_size:(index+1)*batch_size], |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
232 y:valid_set_y[index*batch_size:(index+1)*batch_size]}) |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
233 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
234 # compute the gradient of cost with respect to theta (sotred in params) |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
235 # the resulting gradients will be stored in a list gparams |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
236 gparams = [] |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
237 for param in classifier.params: |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
238 gparam = T.grad(cost, param) |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
239 gparams.append(gparam) |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
240 |
0 | 241 |
242 # specify how to update the parameters of the model as a dictionary | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
243 updates = {} |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
244 # given two list the zip A = [ a1,a2,a3,a4] and B = [b1,b2,b3,b4] of |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
245 # same length, zip generates a list C of same size, where each element |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
246 # is a pair formed from the two lists : |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
247 # C = [ (a1,b1), (a2,b2), (a3,b3) , (a4,b4) ] |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
248 for param, gparam in zip(classifier.params, gparams): |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
249 updates[param] = param - learning_rate*gparam |
0 | 250 |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
251 # compiling a Theano function `train_model` that returns the cost, but |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
252 # in the same time updates the parameter of the model based on the rules |
0 | 253 # defined in `updates` |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
254 train_model =theano.function( inputs = [index], outputs = cost, |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
255 updates = updates, |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
256 givens={ |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
257 x:train_set_x[index*batch_size:(index+1)*batch_size], |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
258 y:train_set_y[index*batch_size:(index+1)*batch_size]}) |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
259 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
260 ############### |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
261 # TRAIN MODEL # |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
262 ############### |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
263 print '... training' |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
264 |
0 | 265 # early-stopping parameters |
266 patience = 10000 # look as this many examples regardless | |
267 patience_increase = 2 # wait this much longer when a new best is | |
268 # found | |
269 improvement_threshold = 0.995 # a relative improvement of this much is | |
270 # considered significant | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
271 validation_frequency = min(n_train_batches,patience/2) |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
272 # go through this many |
0 | 273 # minibatche before checking the network |
274 # on the validation set; in this case we | |
275 # check every epoch | |
276 | |
277 | |
278 best_params = None | |
279 best_validation_loss = float('inf') | |
2
bcc87d3e33a3
adding latest tutorial code
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
0
diff
changeset
|
280 best_iter = 0 |
0 | 281 test_score = 0. |
282 start_time = time.clock() | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
283 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
284 epoch = 0 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
285 done_looping = False |
0 | 286 |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
287 while (epoch < n_epochs) and (not done_looping): |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
288 epoch = epoch + 1 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
289 for minibatch_index in xrange(n_train_batches): |
0 | 290 |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
291 minibatch_avg_cost = train_model(minibatch_index) |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
292 # iteration number |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
293 iter = epoch * n_train_batches + minibatch_index |
0 | 294 |
295 if (iter+1) % validation_frequency == 0: | |
296 # compute zero-one loss on validation set | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
297 validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
298 this_validation_loss = numpy.mean(validation_losses) |
0 | 299 |
300 print('epoch %i, minibatch %i/%i, validation error %f %%' % \ | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
301 (epoch, minibatch_index+1,n_train_batches, \ |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
302 this_validation_loss*100.)) |
0 | 303 |
304 | |
305 # if we got the best validation score until now | |
306 if this_validation_loss < best_validation_loss: | |
307 #improve patience if loss improvement is good enough | |
308 if this_validation_loss < best_validation_loss * \ | |
309 improvement_threshold : | |
310 patience = max(patience, iter * patience_increase) | |
311 | |
312 best_validation_loss = this_validation_loss | |
313 # test it on the test set | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
314 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
315 test_losses = [test_model(i) for i in xrange(n_test_batches)] |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
316 test_score = numpy.mean(test_losses) |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
317 |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
318 print((' epoch %i, minibatch %i/%i, test error of best ' |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
319 'model %f %%') % \ |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
320 (epoch, minibatch_index+1, n_train_batches,test_score*100.)) |
0 | 321 |
322 if patience <= iter : | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
323 done_looping = True |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
324 break |
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
325 |
0 | 326 |
327 end_time = time.clock() | |
2
bcc87d3e33a3
adding latest tutorial code
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
0
diff
changeset
|
328 print(('Optimization complete. Best validation score of %f %% ' |
bcc87d3e33a3
adding latest tutorial code
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
0
diff
changeset
|
329 'obtained at iteration %i, with test performance %f %%') % |
bcc87d3e33a3
adding latest tutorial code
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
0
diff
changeset
|
330 (best_validation_loss * 100., best_iter, test_score*100.)) |
0 | 331 print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) |
332 | |
333 | |
334 if __name__ == '__main__': | |
165
4bc5eeec6394
Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
18
diff
changeset
|
335 test_mlp() |
0 | 336 |