Mercurial > ift6266
annotate deep/stacked_dae/old/utils.py @ 629:75458692efba
make a makefile rule for the aistats2011_cameraready.pdf target. It use new generic rule behind.
author | Frederic Bastien <nouiz@nouiz.org> |
---|---|
date | Thu, 17 Mar 2011 14:34:52 -0400 |
parents | c8fe09a65039 |
children |
rev | line source |
---|---|
131
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
1 #!/usr/bin/python |
191
3632e6258642
Ajouts mineurs à stacked_dae, juste printé l'heure je crois.
fsavard
parents:
167
diff
changeset
|
2 # coding: utf-8 |
3632e6258642
Ajouts mineurs à stacked_dae, juste printé l'heure je crois.
fsavard
parents:
167
diff
changeset
|
3 |
3632e6258642
Ajouts mineurs à stacked_dae, juste printé l'heure je crois.
fsavard
parents:
167
diff
changeset
|
4 from __future__ import with_statement |
131
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
5 |
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
6 from jobman import DD |
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
7 |
139
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
8 # from pylearn codebase |
192
e656edaedb48
Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents:
191
diff
changeset
|
9 # useful in __init__(param1, param2, etc.) to save |
e656edaedb48
Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents:
191
diff
changeset
|
10 # values in self.param1, self.param2... just call |
e656edaedb48
Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents:
191
diff
changeset
|
11 # update_locals(self, locals()) |
139
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
12 def update_locals(obj, dct): |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
13 if 'self' in dct: |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
14 del dct['self'] |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
15 obj.__dict__.update(dct) |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
16 |
192
e656edaedb48
Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents:
191
diff
changeset
|
17 # from a dictionary of possible values for hyperparameters, e.g. |
e656edaedb48
Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents:
191
diff
changeset
|
18 # hp_values = {'learning_rate':[0.1, 0.01], 'num_layers': [1,2]} |
e656edaedb48
Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents:
191
diff
changeset
|
19 # create a list of other dictionaries representing all the possible |
e656edaedb48
Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents:
191
diff
changeset
|
20 # combinations, thus in this example creating: |
e656edaedb48
Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents:
191
diff
changeset
|
21 # [{'learning_rate': 0.1, 'num_layers': 1}, ...] |
e656edaedb48
Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents:
191
diff
changeset
|
22 # (similarly for combinations (0.1, 2), (0.01, 1), (0.01, 2)) |
e656edaedb48
Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents:
191
diff
changeset
|
23 def produit_cartesien_jobs(val_dict): |
131
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
24 job_list = [DD()] |
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
25 all_keys = val_dict.keys() |
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
26 |
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
27 for key in all_keys: |
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
28 possible_values = val_dict[key] |
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
29 new_job_list = [] |
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
30 for val in possible_values: |
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
31 for job in job_list: |
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
32 to_insert = job.copy() |
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
33 to_insert.update({key: val}) |
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
34 new_job_list.append(to_insert) |
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
35 job_list = new_job_list |
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
36 |
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
37 return job_list |
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
38 |
192
e656edaedb48
Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents:
191
diff
changeset
|
39 def test_produit_cartesien_jobs(): |
131
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
40 vals = {'a': [1,2], 'b': [3,4,5]} |
192
e656edaedb48
Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents:
191
diff
changeset
|
41 print produit_cartesien_jobs(vals) |
131
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
42 |
5c79a2557f2f
Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff
changeset
|
43 |
139
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
44 # taken from http://stackoverflow.com/questions/276052/how-to-get-current-cpu-and-ram-usage-in-python |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
45 """Simple module for getting amount of memory used by a specified user's |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
46 processes on a UNIX system. |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
47 It uses UNIX ps utility to get the memory usage for a specified username and |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
48 pipe it to awk for summing up per application memory usage and return the total. |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
49 Python's Popen() from subprocess module is used for spawning ps and awk. |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
50 |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
51 """ |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
52 |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
53 import subprocess |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
54 |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
55 class MemoryMonitor(object): |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
56 |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
57 def __init__(self, username): |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
58 """Create new MemoryMonitor instance.""" |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
59 self.username = username |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
60 |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
61 def usage(self): |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
62 """Return int containing memory used by user's processes.""" |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
63 self.process = subprocess.Popen("ps -u %s -o rss | awk '{sum+=$1} END {print sum}'" % self.username, |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
64 shell=True, |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
65 stdout=subprocess.PIPE, |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
66 ) |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
67 self.stdout_list = self.process.communicate()[0].split('\n') |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
68 return int(self.stdout_list[0]) |
7d8366fb90bf
Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents:
131
diff
changeset
|
69 |