Mercurial > ift6266
annotate baseline/mlp/mlp_nist.py @ 322:743907366476
code clean up in progress
author | xaviermuller |
---|---|
date | Tue, 06 Apr 2010 16:00:52 -0400 |
parents | 1e4bf5a5b46d |
children | 7a7615f940e8 |
rev | line source |
---|---|
110 | 1 """ |
2 This tutorial introduces the multilayer perceptron using Theano. | |
3 | |
4 A multilayer perceptron is a logistic regressor where | |
5 instead of feeding the input to the logistic regression you insert a | |
6 intermidiate layer, called the hidden layer, that has a nonlinear | |
7 activation function (usually tanh or sigmoid) . One can use many such | |
8 hidden layers making the architecture deep. The tutorial will also tackle | |
9 the problem of MNIST digit classification. | |
10 | |
11 .. math:: | |
12 | |
13 f(x) = G( b^{(2)} + W^{(2)}( s( b^{(1)} + W^{(1)} x))), | |
14 | |
15 References: | |
16 | |
17 - textbooks: "Pattern Recognition and Machine Learning" - | |
18 Christopher M. Bishop, section 5 | |
19 | |
20 TODO: recommended preprocessing, lr ranges, regularization ranges (explain | |
21 to do lr first, then add regularization) | |
22 | |
23 """ | |
24 __docformat__ = 'restructedtext en' | |
25 | |
26 import pdb | |
27 import numpy | |
28 import pylab | |
29 import theano | |
30 import theano.tensor as T | |
31 import time | |
32 import theano.tensor.nnet | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
33 import pylearn |
304
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
34 import theano,pylearn.version,ift6266 |
110 | 35 from pylearn.io import filetensor as ft |
322 | 36 from ift6266 import datasets |
110 | 37 |
38 data_path = '/data/lisa/data/nist/by_class/' | |
39 | |
40 class MLP(object): | |
41 """Multi-Layer Perceptron Class | |
42 | |
43 A multilayer perceptron is a feedforward artificial neural network model | |
44 that has one layer or more of hidden units and nonlinear activations. | |
45 Intermidiate layers usually have as activation function thanh or the | |
46 sigmoid function while the top layer is a softamx layer. | |
47 """ | |
48 | |
49 | |
50 | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
51 def __init__(self, input, n_in, n_hidden, n_out,learning_rate): |
110 | 52 """Initialize the parameters for the multilayer perceptron |
53 | |
54 :param input: symbolic variable that describes the input of the | |
55 architecture (one minibatch) | |
56 | |
57 :param n_in: number of input units, the dimension of the space in | |
58 which the datapoints lie | |
59 | |
60 :param n_hidden: number of hidden units | |
61 | |
62 :param n_out: number of output units, the dimension of the space in | |
63 which the labels lie | |
64 | |
65 """ | |
66 | |
67 # initialize the parameters theta = (W1,b1,W2,b2) ; note that this | |
68 # example contains only one hidden layer, but one can have as many | |
69 # layers as he/she wishes, making the network deeper. The only | |
70 # problem making the network deep this way is during learning, | |
71 # backpropagation being unable to move the network from the starting | |
72 # point towards; this is where pre-training helps, giving a good | |
73 # starting point for backpropagation, but more about this in the | |
74 # other tutorials | |
75 | |
76 # `W1` is initialized with `W1_values` which is uniformely sampled | |
77 # from -6./sqrt(n_in+n_hidden) and 6./sqrt(n_in+n_hidden) | |
78 # the output of uniform if converted using asarray to dtype | |
79 # theano.config.floatX so that the code is runable on GPU | |
80 W1_values = numpy.asarray( numpy.random.uniform( \ | |
81 low = -numpy.sqrt(6./(n_in+n_hidden)), \ | |
82 high = numpy.sqrt(6./(n_in+n_hidden)), \ | |
83 size = (n_in, n_hidden)), dtype = theano.config.floatX) | |
84 # `W2` is initialized with `W2_values` which is uniformely sampled | |
85 # from -6./sqrt(n_hidden+n_out) and 6./sqrt(n_hidden+n_out) | |
86 # the output of uniform if converted using asarray to dtype | |
87 # theano.config.floatX so that the code is runable on GPU | |
88 W2_values = numpy.asarray( numpy.random.uniform( | |
89 low = -numpy.sqrt(6./(n_hidden+n_out)), \ | |
90 high= numpy.sqrt(6./(n_hidden+n_out)),\ | |
91 size= (n_hidden, n_out)), dtype = theano.config.floatX) | |
92 | |
93 self.W1 = theano.shared( value = W1_values ) | |
94 self.b1 = theano.shared( value = numpy.zeros((n_hidden,), | |
95 dtype= theano.config.floatX)) | |
96 self.W2 = theano.shared( value = W2_values ) | |
97 self.b2 = theano.shared( value = numpy.zeros((n_out,), | |
98 dtype= theano.config.floatX)) | |
99 | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
100 #include the learning rate in the classifer so |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
101 #we can modify it on the fly when we want |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
102 lr_value=learning_rate |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
103 self.lr=theano.shared(value=lr_value) |
110 | 104 # symbolic expression computing the values of the hidden layer |
105 self.hidden = T.tanh(T.dot(input, self.W1)+ self.b1) | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
106 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
107 |
110 | 108 |
109 # symbolic expression computing the values of the top layer | |
110 self.p_y_given_x= T.nnet.softmax(T.dot(self.hidden, self.W2)+self.b2) | |
111 | |
112 # compute prediction as class whose probability is maximal in | |
113 # symbolic form | |
114 self.y_pred = T.argmax( self.p_y_given_x, axis =1) | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
115 self.y_pred_num = T.argmax( self.p_y_given_x[0:9], axis =1) |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
116 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
117 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
118 |
110 | 119 |
120 # L1 norm ; one regularization option is to enforce L1 norm to | |
121 # be small | |
122 self.L1 = abs(self.W1).sum() + abs(self.W2).sum() | |
123 | |
124 # square of L2 norm ; one regularization option is to enforce | |
125 # square of L2 norm to be small | |
126 self.L2_sqr = (self.W1**2).sum() + (self.W2**2).sum() | |
127 | |
128 | |
129 | |
130 def negative_log_likelihood(self, y): | |
131 """Return the mean of the negative log-likelihood of the prediction | |
132 of this model under a given target distribution. | |
133 | |
134 .. math:: | |
135 | |
136 \frac{1}{|\mathcal{D}|}\mathcal{L} (\theta=\{W,b\}, \mathcal{D}) = | |
137 \frac{1}{|\mathcal{D}|}\sum_{i=0}^{|\mathcal{D}|} \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\ | |
138 \ell (\theta=\{W,b\}, \mathcal{D}) | |
139 | |
140 | |
141 :param y: corresponds to a vector that gives for each example the | |
142 :correct label | |
143 """ | |
144 return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) | |
145 | |
146 | |
147 | |
148 | |
149 def errors(self, y): | |
150 """Return a float representing the number of errors in the minibatch | |
151 over the total number of examples of the minibatch | |
152 """ | |
153 | |
154 # check if y has same dimension of y_pred | |
155 if y.ndim != self.y_pred.ndim: | |
156 raise TypeError('y should have the same shape as self.y_pred', | |
157 ('y', target.type, 'y_pred', self.y_pred.type)) | |
158 # check if y is of the correct datatype | |
159 if y.dtype.startswith('int'): | |
160 # the T.neq operator returns a vector of 0s and 1s, where 1 | |
161 # represents a mistake in prediction | |
162 return T.mean(T.neq(self.y_pred, y)) | |
163 else: | |
164 raise NotImplementedError() | |
165 | |
166 | |
304
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
167 def mlp_full_nist( verbose = 1,\ |
145
8ceaaf812891
changed adaptive lr flag from bool to int for jobman issues
XavierMuller
parents:
143
diff
changeset
|
168 adaptive_lr = 0,\ |
322 | 169 data_set=0,\ |
110 | 170 learning_rate=0.01,\ |
171 L1_reg = 0.00,\ | |
172 L2_reg = 0.0001,\ | |
173 nb_max_exemples=1000000,\ | |
174 batch_size=20,\ | |
322 | 175 nb_hidden = 30,\ |
212
e390b0454515
added classic lr time decay and py code to calculate the error based on a saved model
xaviermuller
parents:
169
diff
changeset
|
176 nb_targets = 62, |
304
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
177 tau=1e6,\ |
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
178 lr_t2_factor=0.5): |
110 | 179 |
180 | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
181 configuration = [learning_rate,nb_max_exemples,nb_hidden,adaptive_lr] |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
182 |
212
e390b0454515
added classic lr time decay and py code to calculate the error based on a saved model
xaviermuller
parents:
169
diff
changeset
|
183 #save initial learning rate if classical adaptive lr is used |
e390b0454515
added classic lr time decay and py code to calculate the error based on a saved model
xaviermuller
parents:
169
diff
changeset
|
184 initial_lr=learning_rate |
e390b0454515
added classic lr time decay and py code to calculate the error based on a saved model
xaviermuller
parents:
169
diff
changeset
|
185 |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
186 total_validation_error_list = [] |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
187 total_train_error_list = [] |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
188 learning_rate_list=[] |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
189 best_training_error=float('inf'); |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
190 |
322 | 191 if data_set==0: |
192 dataset=datasets.nist_all() | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
193 |
212
e390b0454515
added classic lr time decay and py code to calculate the error based on a saved model
xaviermuller
parents:
169
diff
changeset
|
194 |
110 | 195 |
196 | |
197 ishape = (32,32) # this is the size of NIST images | |
198 | |
199 # allocate symbolic variables for the data | |
200 x = T.fmatrix() # the data is presented as rasterized images | |
201 y = T.lvector() # the labels are presented as 1D vector of | |
202 # [long int] labels | |
203 | |
322 | 204 |
110 | 205 # construct the logistic regression class |
322 | 206 classifier = MLP( input=x,\ |
110 | 207 n_in=32*32,\ |
208 n_hidden=nb_hidden,\ | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
209 n_out=nb_targets, |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
210 learning_rate=learning_rate) |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
211 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
212 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
213 |
110 | 214 |
215 # the cost we minimize during training is the negative log likelihood of | |
216 # the model plus the regularization terms (L1 and L2); cost is expressed | |
217 # here symbolically | |
218 cost = classifier.negative_log_likelihood(y) \ | |
219 + L1_reg * classifier.L1 \ | |
220 + L2_reg * classifier.L2_sqr | |
221 | |
222 # compiling a theano function that computes the mistakes that are made by | |
223 # the model on a minibatch | |
224 test_model = theano.function([x,y], classifier.errors(y)) | |
225 | |
226 # compute the gradient of cost with respect to theta = (W1, b1, W2, b2) | |
227 g_W1 = T.grad(cost, classifier.W1) | |
228 g_b1 = T.grad(cost, classifier.b1) | |
229 g_W2 = T.grad(cost, classifier.W2) | |
230 g_b2 = T.grad(cost, classifier.b2) | |
231 | |
232 # specify how to update the parameters of the model as a dictionary | |
233 updates = \ | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
234 { classifier.W1: classifier.W1 - classifier.lr*g_W1 \ |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
235 , classifier.b1: classifier.b1 - classifier.lr*g_b1 \ |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
236 , classifier.W2: classifier.W2 - classifier.lr*g_W2 \ |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
237 , classifier.b2: classifier.b2 - classifier.lr*g_b2 } |
110 | 238 |
239 # compiling a theano function `train_model` that returns the cost, but in | |
240 # the same time updates the parameter of the model based on the rules | |
241 # defined in `updates` | |
242 train_model = theano.function([x, y], cost, updates = updates ) | |
322 | 243 |
244 | |
245 | |
110 | 246 |
247 | |
248 | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
249 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
250 |
110 | 251 |
252 #conditions for stopping the adaptation: | |
253 #1) we have reached nb_max_exemples (this is rounded up to be a multiple of the train size) | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
254 #2) validation error is going up twice in a row(probable overfitting) |
110 | 255 |
256 # This means we no longer stop on slow convergence as low learning rates stopped | |
257 # too fast. | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
258 |
322 | 259 #approximate number of samples in the training set |
260 #this is just to have a validation frequency | |
261 #roughly proportionnal to the training set | |
262 n_minibatches = 650000/batch_size | |
263 | |
264 | |
265 patience =nb_max_exemples/batch_size #in units of minibatch | |
110 | 266 patience_increase = 2 # wait this much longer when a new best is |
267 # found | |
268 improvement_threshold = 0.995 # a relative improvement of this much is | |
269 # considered significant | |
270 validation_frequency = n_minibatches/4 | |
271 | |
272 | |
273 | |
274 | |
322 | 275 |
110 | 276 best_validation_loss = float('inf') |
277 best_iter = 0 | |
278 test_score = 0. | |
279 start_time = time.clock() | |
212
e390b0454515
added classic lr time decay and py code to calculate the error based on a saved model
xaviermuller
parents:
169
diff
changeset
|
280 time_n=0 #in unit of exemples |
322 | 281 minibatch_index=0 |
282 epoch=0 | |
283 temp=0 | |
284 | |
212
e390b0454515
added classic lr time decay and py code to calculate the error based on a saved model
xaviermuller
parents:
169
diff
changeset
|
285 |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
286 |
304
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
287 if verbose == 1: |
322 | 288 print 'looking at most at %i exemples' %nb_max_exemples |
289 while(minibatch_index*batch_size<nb_max_exemples): | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
290 |
322 | 291 for x, y in dataset.train(batch_size): |
110 | 292 |
322 | 293 |
294 minibatch_index = minibatch_index + 1 | |
295 if adaptive_lr==2: | |
296 classifier.lr.value = tau*initial_lr/(tau+time_n) | |
297 | |
298 | |
299 #train model | |
300 cost_ij = train_model(x,y) | |
301 | |
302 if (minibatch_index+1) % validation_frequency == 0: | |
303 | |
304 #save the current learning rate | |
305 learning_rate_list.append(classifier.lr.value) | |
306 | |
307 # compute the validation error | |
308 this_validation_loss = 0. | |
309 temp=0 | |
310 for xv,yv in dataset.valid(1): | |
311 # sum up the errors for each minibatch | |
312 axxa=test_model(xv,yv) | |
313 this_validation_loss += axxa | |
314 temp=temp+1 | |
315 # get the average by dividing with the number of minibatches | |
316 this_validation_loss /= temp | |
317 #save the validation loss | |
318 total_validation_error_list.append(this_validation_loss) | |
304
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
319 if verbose == 1: |
322 | 320 print(('epoch %i, minibatch %i, learning rate %f current validation error %f ') % |
321 (epoch, minibatch_index+1,classifier.lr.value, | |
322 this_validation_loss*100.)) | |
323 | |
324 # if we got the best validation score until now | |
325 if this_validation_loss < best_validation_loss: | |
326 # save best validation score and iteration number | |
327 best_validation_loss = this_validation_loss | |
328 best_iter = minibatch_index | |
329 # reset patience if we are going down again | |
330 # so we continue exploring | |
331 patience=nb_max_exemples/batch_size | |
332 # test it on the test set | |
333 test_score = 0. | |
334 temp =0 | |
335 for xt,yt in dataset.test(batch_size): | |
336 test_score += test_model(xt,yt) | |
337 temp = temp+1 | |
338 test_score /= temp | |
339 if verbose == 1: | |
340 print(('epoch %i, minibatch %i, test error of best ' | |
341 'model %f %%') % | |
342 (epoch, minibatch_index+1, | |
343 test_score*100.)) | |
344 | |
345 # if the validation error is going up, we are overfitting (or oscillating) | |
346 # stop converging but run at least to next validation | |
347 # to check overfitting or ocsillation | |
348 # the saved weights of the model will be a bit off in that case | |
349 elif this_validation_loss >= best_validation_loss: | |
350 #calculate the test error at this point and exit | |
351 # test it on the test set | |
352 # however, if adaptive_lr is true, try reducing the lr to | |
353 # get us out of an oscilliation | |
354 if adaptive_lr==1: | |
355 classifier.lr.value=classifier.lr.value*lr_t2_factor | |
356 | |
357 test_score = 0. | |
358 #cap the patience so we are allowed one more validation error | |
359 #calculation before aborting | |
360 patience = minibatch_index+validation_frequency+1 | |
361 temp=0 | |
362 for xt,yt in dataset.test(batch_size): | |
363 test_score += test_model(xt,yt) | |
364 temp=temp+1 | |
365 test_score /= temp | |
366 if verbose == 1: | |
367 print ' validation error is going up, possibly stopping soon' | |
368 print((' epoch %i, minibatch %i, test error of best ' | |
369 'model %f %%') % | |
370 (epoch, minibatch_index+1, | |
371 test_score*100.)) | |
372 | |
373 | |
374 | |
375 | |
376 if minibatch_index>patience: | |
377 print 'we have diverged' | |
378 break | |
379 | |
380 | |
381 time_n= time_n + batch_size | |
382 epoch = epoch+1 | |
110 | 383 end_time = time.clock() |
304
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
384 if verbose == 1: |
110 | 385 print(('Optimization complete. Best validation score of %f %% ' |
386 'obtained at iteration %i, with test performance %f %%') % | |
387 (best_validation_loss * 100., best_iter, test_score*100.)) | |
388 print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) | |
322 | 389 print minibatch_index |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
390 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
391 #save the model and the weights |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
392 numpy.savez('model.npy', config=configuration, W1=classifier.W1.value,W2=classifier.W2.value, b1=classifier.b1.value,b2=classifier.b2.value) |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
393 numpy.savez('results.npy',config=configuration,total_train_error_list=total_train_error_list,total_validation_error_list=total_validation_error_list,\ |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
394 learning_rate_list=learning_rate_list) |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
395 |
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
396 return (best_training_error*100.0,best_validation_loss * 100.,test_score*100.,best_iter*batch_size,(end_time-start_time)/60) |
110 | 397 |
398 | |
399 if __name__ == '__main__': | |
400 mlp_full_mnist() | |
401 | |
402 def jobman_mlp_full_nist(state,channel): | |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
403 (train_error,validation_error,test_error,nb_exemples,time)=mlp_full_nist(learning_rate=state.learning_rate,\ |
304
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
404 nb_max_exemples=state.nb_max_exemples,\ |
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
405 nb_hidden=state.nb_hidden,\ |
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
406 adaptive_lr=state.adaptive_lr,\ |
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
407 tau=state.tau,\ |
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
408 verbose = state.verbose,\ |
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
409 train_data = state.train_data,\ |
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
410 train_labels = state.train_labels,\ |
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
411 test_data = state.test_data,\ |
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
412 test_labels = state.test_labels,\ |
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
413 lr_t2_factor=state.lr_t2_factor) |
143
f341a4efb44a
added adaptive lr, weight file save, traine error and error curves
XavierMuller
parents:
110
diff
changeset
|
414 state.train_error=train_error |
110 | 415 state.validation_error=validation_error |
416 state.test_error=test_error | |
417 state.nb_exemples=nb_exemples | |
418 state.time=time | |
304
1e4bf5a5b46d
added type 2 adaptive learning configurable learning weight + versionning
xaviermuller
parents:
237
diff
changeset
|
419 pylearn.version.record_versions(state,[theano,ift6266,pylearn]) |
110 | 420 return channel.COMPLETE |
421 | |
422 |