annotate deep/stacked_dae/v_sylvain/sgd_optimization.py @ 282:698313f8f6e6

rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
author SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
date Wed, 24 Mar 2010 14:45:02 -0400
parents a8b92a4a708d
children 28b628f331b2
rev   line source
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
1 #!/usr/bin/python
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
2 # coding: utf-8
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
3
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
4 # Generic SdA optimization loop, adapted from the deeplearning.net tutorial
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
5
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
6 import numpy
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
7 import theano
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
8 import time
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
9 import datetime
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
10 import theano.tensor as T
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
11 import sys
263
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
12 import pickle
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
13
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
14 from jobman import DD
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
15 import jobman, jobman.sql
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
16 from copy import copy
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
17
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
18 from stacked_dae import SdA
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
19
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
20 from ift6266.utils.seriestables import *
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
21
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
22 default_series = { \
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
23 'reconstruction_error' : DummySeries(),
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
24 'training_error' : DummySeries(),
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
25 'validation_error' : DummySeries(),
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
26 'test_error' : DummySeries(),
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
27 'params' : DummySeries()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
28 }
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
29
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
30 def itermax(iter, max):
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
31 for i,it in enumerate(iter):
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
32 if i >= max:
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
33 break
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
34 yield it
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
35
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
36 class SdaSgdOptimizer:
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
37 def __init__(self, dataset, hyperparameters, n_ins, n_outs,
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
38 examples_per_epoch, series=default_series, max_minibatches=None):
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
39 self.dataset = dataset
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
40 self.hp = hyperparameters
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
41 self.n_ins = n_ins
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
42 self.n_outs = n_outs
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
43 self.parameters_pre=[]
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
44
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
45 self.max_minibatches = max_minibatches
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
46 print "SdaSgdOptimizer, max_minibatches =", max_minibatches
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
47
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
48 self.ex_per_epoch = examples_per_epoch
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
49 self.mb_per_epoch = examples_per_epoch / self.hp.minibatch_size
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
50
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
51 self.series = series
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
52
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
53 self.rng = numpy.random.RandomState(1234)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
54
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
55 self.init_classifier()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
56
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
57 sys.stdout.flush()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
58
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
59 def init_classifier(self):
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
60 print "Constructing classifier"
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
61
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
62 # we don't want to save arrays in DD objects, so
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
63 # we recreate those arrays here
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
64 nhl = self.hp.num_hidden_layers
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
65 layers_sizes = [self.hp.hidden_layers_sizes] * nhl
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
66 corruption_levels = [self.hp.corruption_levels] * nhl
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
67
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
68 # construct the stacked denoising autoencoder class
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
69 self.classifier = SdA( \
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
70 batch_size = self.hp.minibatch_size, \
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
71 n_ins= self.n_ins, \
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
72 hidden_layers_sizes = layers_sizes, \
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
73 n_outs = self.n_outs, \
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
74 corruption_levels = corruption_levels,\
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
75 rng = self.rng,\
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
76 pretrain_lr = self.hp.pretraining_lr, \
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
77 finetune_lr = self.hp.finetuning_lr)
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
78
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
79 #theano.printing.pydotprint(self.classifier.pretrain_functions[0], "function.graph")
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
80
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
81 sys.stdout.flush()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
82
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
83 def train(self):
233
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
84 self.pretrain(self.dataset)
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
85 self.finetune(self.dataset)
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
86
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
87 def pretrain(self,dataset):
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
88 print "STARTING PRETRAINING, time = ", datetime.datetime.now()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
89 sys.stdout.flush()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
90
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
91 start_time = time.clock()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
92 ## Pre-train layer-wise
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
93 for i in xrange(self.classifier.n_layers):
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
94 # go through pretraining epochs
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
95 for epoch in xrange(self.hp.pretraining_epochs_per_layer):
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
96 # go through the training set
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
97 batch_index=0
281
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
98 count=0
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
99 num_files=0
233
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
100 for x,y in dataset.train(self.hp.minibatch_size):
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
101 c = self.classifier.pretrain_functions[i](x)
281
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
102 count +=1
238
9fc641d7adda Possibilite de restreindre la taille des ensemble d'entrainement, valid et test afin de pouvoir tester le code rapidement
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 235
diff changeset
103
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
104 self.series["reconstruction_error"].append((epoch, batch_index), c)
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
105 batch_index+=1
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
106
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
107 #if batch_index % 100 == 0:
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
108 # print "100 batches"
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
109
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
110 # useful when doing tests
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
111 if self.max_minibatches and batch_index >= self.max_minibatches:
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
112 break
281
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
113
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
114 #When we pass through the data only once (the case with P07)
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
115 #There is approximately 800*1024=819200 examples per file (1k per example and files are 800M)
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
116 if self.hp.pretraining_epochs_per_layer == 1 and count%819200 == 0:
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
117 print 'Pre-training layer %i, epoch %d, cost '%(i,num_files),c
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
118 num_files+=1
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
119 sys.stdout.flush()
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
120 self.series['params'].append((num_files,), self.classifier.all_params)
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
121
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
122 #When NIST is used
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
123 if self.hp.pretraining_epochs_per_layer > 1:
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
124 print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
125 sys.stdout.flush()
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
126
281
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
127 self.series['params'].append((epoch,), self.classifier.all_params)
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
128
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
129 end_time = time.clock()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
130
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
131 print ('Pretraining took %f minutes' %((end_time-start_time)/60.))
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
132 self.hp.update({'pretraining_time': end_time-start_time})
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
133
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
134 sys.stdout.flush()
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
135
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
136 #To be able to load them later for tests on finetune
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
137 self.parameters_pre=[copy(x.value) for x in self.classifier.params]
263
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
138 f = open('params_pretrain.txt', 'w')
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
139 pickle.dump(self.parameters_pre,f)
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
140 f.close()
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
141
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
142
281
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
143 def finetune(self,dataset,dataset_test,num_finetune,ind_test,special=0):
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
144
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
145 if special != 0 and special != 1:
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
146 sys.exit('Bad value for variable special. Must be in {0,1}')
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
147 print "STARTING FINETUNING, time = ", datetime.datetime.now()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
148
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
149 minibatch_size = self.hp.minibatch_size
281
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
150 if ind_test == 0 or ind_test == 20:
263
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
151 nom_test = "NIST"
281
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
152 nom_train="P07"
263
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
153 else:
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
154 nom_test = "P07"
281
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
155 nom_train = "NIST"
263
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
156
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
157
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
158 # create a function to compute the mistakes that are made by the model
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
159 # on the validation set, or testing set
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
160 test_model = \
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
161 theano.function(
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
162 [self.classifier.x,self.classifier.y], self.classifier.errors)
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
163 # givens = {
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
164 # self.classifier.x: ensemble_x,
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
165 # self.classifier.y: ensemble_y]})
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
166
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
167 validate_model = \
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
168 theano.function(
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
169 [self.classifier.x,self.classifier.y], self.classifier.errors)
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
170 # givens = {
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
171 # self.classifier.x: ,
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
172 # self.classifier.y: ]})
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
173
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
174
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
175 # early-stopping parameters
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
176 patience = 10000 # look as this many examples regardless
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
177 patience_increase = 2. # wait this much longer when a new best is
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
178 # found
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
179 improvement_threshold = 0.995 # a relative improvement of this much is
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
180 # considered significant
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
181 validation_frequency = min(self.mb_per_epoch, patience/2)
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
182 # go through this many
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
183 # minibatche before checking the network
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
184 # on the validation set; in this case we
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
185 # check every epoch
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
186 if self.max_minibatches and validation_frequency > self.max_minibatches:
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
187 validation_frequency = self.max_minibatches / 2
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
188
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
189 best_params = None
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
190 best_validation_loss = float('inf')
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
191 test_score = 0.
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
192 start_time = time.clock()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
193
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
194 done_looping = False
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
195 epoch = 0
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
196
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
197 total_mb_index = 0
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
198
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
199 while (epoch < num_finetune) and (not done_looping):
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
200 epoch = epoch + 1
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
201 minibatch_index = -1
233
02ed13244133 version pour utilisation du module dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 230
diff changeset
202 for x,y in dataset.train(minibatch_size):
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
203 minibatch_index += 1
281
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
204 if special == 0:
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
205 cost_ij = self.classifier.finetune(x,y)
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
206 elif special == 1:
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
207 cost_ij = self.classifier.finetune2(x,y)
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
208 total_mb_index += 1
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
209
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
210 self.series["training_error"].append((epoch, minibatch_index), cost_ij)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
211
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
212 if (total_mb_index+1) % validation_frequency == 0:
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
213
281
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
214 #The validation set is always NIST
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
215 if ind_test == 0:
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
216 iter=dataset_test.valid(minibatch_size)
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
217 else:
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
218 iter = dataset.valid(minibatch_size)
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
219 if self.max_minibatches:
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
220 iter = itermax(iter, self.max_minibatches)
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
221 validation_losses = [validate_model(x,y) for x,y in iter]
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
222 this_validation_loss = numpy.mean(validation_losses)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
223
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
224 self.series["validation_error"].\
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
225 append((epoch, minibatch_index), this_validation_loss*100.)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
226
281
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
227 print('epoch %i, minibatch %i, validation error on %s : %f %%' % \
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
228 (epoch, minibatch_index+1,nom_test, \
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
229 this_validation_loss*100.))
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
231
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
232 # if we got the best validation score until now
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
233 if this_validation_loss < best_validation_loss:
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
234
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
235 #improve patience if loss improvement is good enough
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
236 if this_validation_loss < best_validation_loss * \
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
237 improvement_threshold :
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
238 patience = max(patience, total_mb_index * patience_increase)
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
239
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
240 # save best validation score and iteration number
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
241 best_validation_loss = this_validation_loss
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
242 best_iter = total_mb_index
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
243
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
244 # test it on the test set
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
245 iter = dataset.test(minibatch_size)
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
246 if self.max_minibatches:
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
247 iter = itermax(iter, self.max_minibatches)
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
248 test_losses = [test_model(x,y) for x,y in iter]
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
249 test_score = numpy.mean(test_losses)
263
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
250
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
251 #test it on the second test set
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
252 iter2 = dataset_test.test(minibatch_size)
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
253 if self.max_minibatches:
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
254 iter2 = itermax(iter2, self.max_minibatches)
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
255 test_losses2 = [test_model(x,y) for x,y in iter2]
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
256 test_score2 = numpy.mean(test_losses2)
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
257
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
258 self.series["test_error"].\
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
259 append((epoch, minibatch_index), test_score*100.)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
260
281
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
261 print((' epoch %i, minibatch %i, test error on dataset %s (train data) of best '
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
262 'model %f %%') %
281
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
263 (epoch, minibatch_index+1,nom_train,
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
264 test_score*100.))
263
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
265
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
266 print((' epoch %i, minibatch %i, test error on dataset %s of best '
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
267 'model %f %%') %
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
268 (epoch, minibatch_index+1,nom_test,
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
269 test_score2*100.))
281
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
270
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
271 if patience <= total_mb_index:
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
272 done_looping = True
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
273 break
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
274
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
275 sys.stdout.flush()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
276
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
277 # useful when doing tests
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
278 if self.max_minibatches and minibatch_index >= self.max_minibatches:
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
279 break
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
280
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
281 self.series['params'].append((epoch,), self.classifier.all_params)
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
282
281
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
283 if done_looping == True: #To exit completly the fine-tuning
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
284 break
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
285
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
286 end_time = time.clock()
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
287 self.hp.update({'finetuning_time':end_time-start_time,\
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
288 'best_validation_error':best_validation_loss,\
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
289 'test_score':test_score,
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
290 'num_finetuning_epochs':epoch})
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
291
281
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
292 print(('\nOptimization complete with best validation score of %f %%,'
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
293 'with test performance %f %% on dataset %s ') %
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
294 (best_validation_loss * 100., test_score*100.,nom_train))
263
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
295 print(('The test score on the %s dataset is %f')%(nom_test,test_score2*100.))
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
296
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
297 print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.))
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
298
281
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
299 #Save a copy of the parameters in a file to be able to get them in the future
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
300
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
301 if special == 1: #To keep a track of the value of the parameters
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
302 parameters_finetune=[copy(x.value) for x in self.classifier.params]
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
303 f = open('params_finetune_stanford.txt', 'w')
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
304 pickle.dump(parameters_finetune,f)
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
305 f.close()
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
306
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
307 elif ind_test== 0: #To keep a track of the value of the parameters
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
308 parameters_finetune=[copy(x.value) for x in self.classifier.params]
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
309 f = open('params_finetune_P07.txt', 'w')
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
310 pickle.dump(parameters_finetune,f)
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
311 f.close()
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
312
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
313 elif ind_test== 1: #For the run with 2 finetunes. It will be faster.
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
314 parameters_finetune=[copy(x.value) for x in self.classifier.params]
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
315 f = open('params_finetune_NIST.txt', 'w')
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
316 pickle.dump(parameters_finetune,f)
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
317 f.close()
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
318
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
319 elif ind_test== 20: #To keep a track of the value of the parameters
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
320 parameters_finetune=[copy(x.value) for x in self.classifier.params]
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
321 f = open('params_finetune_NIST_then_P07.txt', 'w')
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
322 pickle.dump(parameters_finetune,f)
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
323 f.close()
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
324
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
325
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
326 #Set parameters like they where right after pre-train
281
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
327 def reload_parameters(self,which):
263
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
328
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
329 #self.parameters_pre=pickle.load('params_pretrain.txt')
281
a8b92a4a708d rajout de methode reliant toutes les couches cachees a la logistic et changeant seulement les parametres de la logistic durant finetune
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 263
diff changeset
330 f = open(which)
263
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
331 self.parameters_pre=pickle.load(f)
a0264184684e ajout de fonctionnalitees pour deux testsets
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 252
diff changeset
332 f.close()
252
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
333 for idx,x in enumerate(self.parameters_pre):
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
334 self.classifier.params[idx].value=copy(x)
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
335
7dd43ef66d15 ajout de fonctionnalite pour different finetune dataset
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents: 238
diff changeset
336
230
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
337
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
338
8a94a5c808cd Repertoire pour faire les tests avec les differents ensembles pour le finetuning
SylvainPL <sylvain.pannetier.lebeuf@umontreal.ca>
parents:
diff changeset
339