Mercurial > ift6266
annotate deep/convolutional_dae/stacked_convolutional_dae.py @ 370:543ae35e387e
changes in generation script for the new data
author | Xavier Glorot <glorotxa@iro.umontreal.ca> |
---|---|
date | Sat, 24 Apr 2010 15:34:07 -0400 |
parents | 0c0f0b3f6a93 |
children |
rev | line source |
---|---|
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
1 import numpy |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
2 import theano |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
3 import time |
247
4d109b648c31
Fixed dataset import. Removed unuseful code from da_conv. Keys parameters are now passed as arguments.
humel
parents:
215
diff
changeset
|
4 import sys |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
5 import theano.tensor as T |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
6 from theano.tensor.shared_randomstreams import RandomStreams |
259
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
7 #import theano.sandbox.softsign |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
8 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
9 from theano.tensor.signal import downsample |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
10 from theano.tensor.nnet import conv |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
11 |
247
4d109b648c31
Fixed dataset import. Removed unuseful code from da_conv. Keys parameters are now passed as arguments.
humel
parents:
215
diff
changeset
|
12 from ift6266 import datasets |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
13 from ift6266.baseline.log_reg.log_reg import LogisticRegression |
247
4d109b648c31
Fixed dataset import. Removed unuseful code from da_conv. Keys parameters are now passed as arguments.
humel
parents:
215
diff
changeset
|
14 |
248
7e6fecabb656
Optimized the call of ConvOp by specifying additional parameters. Specified image shape of the da_conv layer.
humel
parents:
247
diff
changeset
|
15 batch_size = 100 |
7e6fecabb656
Optimized the call of ConvOp by specifying additional parameters. Specified image shape of the da_conv layer.
humel
parents:
247
diff
changeset
|
16 |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
17 class SigmoidalLayer(object): |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
18 def __init__(self, rng, input, n_in, n_out): |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
19 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
20 self.input = input |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
21 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
22 W_values = numpy.asarray( rng.uniform( \ |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
23 low = -numpy.sqrt(6./(n_in+n_out)), \ |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
24 high = numpy.sqrt(6./(n_in+n_out)), \ |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
25 size = (n_in, n_out)), dtype = theano.config.floatX) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
26 self.W = theano.shared(value = W_values) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
27 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
28 b_values = numpy.zeros((n_out,), dtype= theano.config.floatX) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
29 self.b = theano.shared(value= b_values) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
30 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
31 self.output = T.tanh(T.dot(input, self.W) + self.b) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
32 self.params = [self.W, self.b] |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
33 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
34 class dA_conv(object): |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
35 |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
36 def __init__(self, input, filter_shape, corruption_level = 0.1, |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
37 shared_W = None, shared_b = None, image_shape = None, |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
38 poolsize = (2,2)): |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
39 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
40 theano_rng = RandomStreams() |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
41 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
42 fan_in = numpy.prod(filter_shape[1:]) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
43 fan_out = filter_shape[0] * numpy.prod(filter_shape[2:]) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
44 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
45 center = theano.shared(value = 1, name="center") |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
46 scale = theano.shared(value = 2, name="scale") |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
47 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
48 if shared_W != None and shared_b != None : |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
49 self.W = shared_W |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
50 self.b = shared_b |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
51 else: |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
52 initial_W = numpy.asarray( numpy.random.uniform( |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
53 low = -numpy.sqrt(6./(fan_in+fan_out)), |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
54 high = numpy.sqrt(6./(fan_in+fan_out)), |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
55 size = filter_shape), dtype = theano.config.floatX) |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
56 initial_b = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX) |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
57 self.W = theano.shared(value = initial_W, name = "W") |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
58 self.b = theano.shared(value = initial_b, name = "b") |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
59 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
60 |
215
334d2444000d
Changes that enable using this code when floatX=float32
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
200
diff
changeset
|
61 initial_b_prime= numpy.zeros((filter_shape[1],),dtype=theano.config.floatX) |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
62 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
63 self.b_prime = theano.shared(value = initial_b_prime, name = "b_prime") |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
64 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
65 self.x = input |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
66 |
215
334d2444000d
Changes that enable using this code when floatX=float32
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
200
diff
changeset
|
67 self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level,dtype=theano.config.floatX) * self.x |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
68 |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
69 conv1_out = conv.conv2d(self.tilde_x, self.W, filter_shape=filter_shape, |
259
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
70 image_shape=image_shape, border_mode='valid') |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
71 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
72 self.y = T.tanh(conv1_out + self.b.dimshuffle('x', 0, 'x', 'x')) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
73 |
259
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
74 da_filter_shape = [ filter_shape[1], filter_shape[0], |
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
75 filter_shape[2], filter_shape[3] ] |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
76 initial_W_prime = numpy.asarray( numpy.random.uniform( \ |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
77 low = -numpy.sqrt(6./(fan_in+fan_out)), \ |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
78 high = numpy.sqrt(6./(fan_in+fan_out)), \ |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
79 size = da_filter_shape), dtype = theano.config.floatX) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
80 self.W_prime = theano.shared(value = initial_W_prime, name = "W_prime") |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
81 |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
82 conv2_out = conv.conv2d(self.y, self.W_prime, |
259
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
83 filter_shape = da_filter_shape, |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
84 border_mode='full') |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
85 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
86 self.z = (T.tanh(conv2_out + self.b_prime.dimshuffle('x', 0, 'x', 'x'))+center) / scale |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
87 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
88 scaled_x = (self.x + center) / scale |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
89 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
90 self.L = - T.sum( scaled_x*T.log(self.z) + (1-scaled_x)*T.log(1-self.z), axis=1 ) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
91 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
92 self.cost = T.mean(self.L) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
93 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
94 self.params = [ self.W, self.b, self.b_prime ] |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
95 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
96 class LeNetConvPoolLayer(object): |
247
4d109b648c31
Fixed dataset import. Removed unuseful code from da_conv. Keys parameters are now passed as arguments.
humel
parents:
215
diff
changeset
|
97 |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
98 def __init__(self, rng, input, filter_shape, image_shape=None, poolsize=(2,2)): |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
99 self.input = input |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
100 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
101 W_values = numpy.zeros(filter_shape, dtype=theano.config.floatX) |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
102 self.W = theano.shared(value=W_values) |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
103 |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
104 b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX) |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
105 self.b = theano.shared(value=b_values) |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
106 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
107 conv_out = conv.conv2d(input, self.W, |
259
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
108 filter_shape=filter_shape, image_shape=image_shape) |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
109 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
110 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
111 fan_in = numpy.prod(filter_shape[1:]) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
112 fan_out = filter_shape[0] * numpy.prod(filter_shape[2:]) / numpy.prod(poolsize) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
113 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
114 W_bound = numpy.sqrt(6./(fan_in + fan_out)) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
115 self.W.value = numpy.asarray( |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
116 rng.uniform(low=-W_bound, high=W_bound, size=filter_shape), |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
117 dtype = theano.config.floatX) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
118 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
119 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
120 pooled_out = downsample.max_pool2D(conv_out, poolsize, ignore_border=True) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
121 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
122 self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
123 self.params = [self.W, self.b] |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
124 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
125 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
126 class SdA(): |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
127 def __init__(self, input, n_ins_mlp, conv_hidden_layers_sizes, |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
128 mlp_hidden_layers_sizes, corruption_levels, rng, n_out, |
259
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
129 pretrain_lr, finetune_lr, img_shape): |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
130 |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
131 self.layers = [] |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
132 self.pretrain_functions = [] |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
133 self.params = [] |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
134 self.conv_n_layers = len(conv_hidden_layers_sizes) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
135 self.mlp_n_layers = len(mlp_hidden_layers_sizes) |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
136 |
215
334d2444000d
Changes that enable using this code when floatX=float32
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
200
diff
changeset
|
137 self.x = T.matrix('x') # the data is presented as rasterized images |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
138 self.y = T.ivector('y') # the labels are presented as 1D vector of |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
139 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
140 for i in xrange( self.conv_n_layers ): |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
141 filter_shape=conv_hidden_layers_sizes[i][0] |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
142 image_shape=conv_hidden_layers_sizes[i][1] |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
143 max_poolsize=conv_hidden_layers_sizes[i][2] |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
144 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
145 if i == 0 : |
259
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
146 layer_input=self.x.reshape((self.x.shape[0], 1) + img_shape) |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
147 else: |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
148 layer_input=self.layers[-1].output |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
149 |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
150 layer = LeNetConvPoolLayer(rng, input=layer_input, |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
151 image_shape=image_shape, |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
152 filter_shape=filter_shape, |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
153 poolsize=max_poolsize) |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
154 print 'Convolutional layer', str(i+1), 'created' |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
155 |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
156 self.layers += [layer] |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
157 self.params += layer.params |
215
334d2444000d
Changes that enable using this code when floatX=float32
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
200
diff
changeset
|
158 |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
159 da_layer = dA_conv(corruption_level = corruption_levels[0], |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
160 input = layer_input, |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
161 shared_W = layer.W, shared_b = layer.b, |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
162 filter_shape = filter_shape, |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
163 image_shape = image_shape ) |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
164 |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
165 gparams = T.grad(da_layer.cost, da_layer.params) |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
166 |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
167 updates = {} |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
168 for param, gparam in zip(da_layer.params, gparams): |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
169 updates[param] = param - gparam * pretrain_lr |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
170 |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
171 update_fn = theano.function([self.x], da_layer.cost, updates = updates) |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
172 |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
173 self.pretrain_functions += [update_fn] |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
174 |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
175 for i in xrange( self.mlp_n_layers ): |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
176 if i == 0 : |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
177 input_size = n_ins_mlp |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
178 else: |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
179 input_size = mlp_hidden_layers_sizes[i-1] |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
180 |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
181 if i == 0 : |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
182 if len( self.layers ) == 0 : |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
183 layer_input=self.x |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
184 else : |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
185 layer_input = self.layers[-1].output.flatten(2) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
186 else: |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
187 layer_input = self.layers[-1].output |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
188 |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
189 layer = SigmoidalLayer(rng, layer_input, input_size, |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
190 mlp_hidden_layers_sizes[i] ) |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
191 |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
192 self.layers += [layer] |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
193 self.params += layer.params |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
194 |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
195 print 'MLP layer', str(i+1), 'created' |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
196 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
197 self.logLayer = LogisticRegression(input=self.layers[-1].output, \ |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
198 n_in=mlp_hidden_layers_sizes[-1], n_out=n_out) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
199 self.params += self.logLayer.params |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
200 |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
201 cost = self.logLayer.negative_log_likelihood(self.y) |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
202 |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
203 gparams = T.grad(cost, self.params) |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
204 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
205 updates = {} |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
206 for param,gparam in zip(self.params, gparams): |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
207 updates[param] = param - gparam*finetune_lr |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
208 |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
209 self.finetune = theano.function([self.x, self.y], cost, updates = updates) |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
210 |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
211 self.errors = self.logLayer.errors(self.y) |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
212 |
259
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
213 def sgd_optimization_mnist(learning_rate=0.1, pretraining_epochs = 1, |
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
214 pretrain_lr = 0.1, training_epochs = 1000, |
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
215 kernels = [[4,5,5], [4,3,3]], mlp_layers=[500], |
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
216 corruption_levels = [0.2, 0.2, 0.2], |
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
217 batch_size = batch_size, img_shape=(28, 28), |
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
218 max_pool_layers = [[2,2], [2,2]], |
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
219 dataset=datasets.mnist(5000)): |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
220 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
221 # allocate symbolic variables for the data |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
222 index = T.lscalar() # index to a [mini]batch |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
223 x = T.matrix('x') # the data is presented as rasterized images |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
224 y = T.ivector('y') # the labels are presented as 1d vector of |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
225 # [int] labels |
247
4d109b648c31
Fixed dataset import. Removed unuseful code from da_conv. Keys parameters are now passed as arguments.
humel
parents:
215
diff
changeset
|
226 |
259
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
227 layer0_input = x.reshape((x.shape[0],1)+img_shape) |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
228 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
229 rng = numpy.random.RandomState(1234) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
230 conv_layers=[] |
259
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
231 init_layer = [[kernels[0][0],1,kernels[0][1],kernels[0][2]], |
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
232 None, # do not specify the batch size since it can |
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
233 # change for the last one and then theano will |
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
234 # crash. |
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
235 max_pool_layers[0]] |
247
4d109b648c31
Fixed dataset import. Removed unuseful code from da_conv. Keys parameters are now passed as arguments.
humel
parents:
215
diff
changeset
|
236 conv_layers.append(init_layer) |
248
7e6fecabb656
Optimized the call of ConvOp by specifying additional parameters. Specified image shape of the da_conv layer.
humel
parents:
247
diff
changeset
|
237 |
259
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
238 conv_n_out = (img_shape[0]-kernels[0][2]+1)/max_pool_layers[0][0] |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
239 |
247
4d109b648c31
Fixed dataset import. Removed unuseful code from da_conv. Keys parameters are now passed as arguments.
humel
parents:
215
diff
changeset
|
240 for i in range(1,len(kernels)): |
259
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
241 layer = [[kernels[i][0],kernels[i-1][0],kernels[i][1],kernels[i][2]], |
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
242 None, # same comment as for init_layer |
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
243 max_pool_layers[i] ] |
247
4d109b648c31
Fixed dataset import. Removed unuseful code from da_conv. Keys parameters are now passed as arguments.
humel
parents:
215
diff
changeset
|
244 conv_layers.append(layer) |
4d109b648c31
Fixed dataset import. Removed unuseful code from da_conv. Keys parameters are now passed as arguments.
humel
parents:
215
diff
changeset
|
245 conv_n_out = (conv_n_out - kernels[i][2]+1)/max_pool_layers[i][0] |
259
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
246 |
247
4d109b648c31
Fixed dataset import. Removed unuseful code from da_conv. Keys parameters are now passed as arguments.
humel
parents:
215
diff
changeset
|
247 network = SdA(input = layer0_input, n_ins_mlp = kernels[-1][0]*conv_n_out**2, |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
248 conv_hidden_layers_sizes = conv_layers, |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
249 mlp_hidden_layers_sizes = mlp_layers, |
259
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
250 corruption_levels = corruption_levels, n_out = 62, |
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
251 rng = rng , pretrain_lr = pretrain_lr, |
3919c71e3091
Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents:
248
diff
changeset
|
252 finetune_lr = learning_rate, img_shape=img_shape) |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
253 |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
254 test_model = theano.function([network.x, network.y], network.errors) |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
255 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
256 start_time = time.clock() |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
257 for i in xrange(len(network.layers)-len(mlp_layers)): |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
258 for epoch in xrange(pretraining_epochs): |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
259 for x, y in dataset.train(batch_size): |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
260 c = network.pretrain_functions[i](x) |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
261 print 'pre-training convolution layer %i, epoch %d, cost '%(i,epoch), c |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
262 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
263 patience = 10000 # look as this many examples regardless |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
264 patience_increase = 2. # WAIT THIS MUCH LONGER WHEN A NEW BEST IS |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
265 # FOUND |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
266 improvement_threshold = 0.995 # a relative improvement of this much is |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
267 |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
268 validation_frequency = patience/2 |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
269 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
270 best_params = None |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
271 best_validation_loss = float('inf') |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
272 test_score = 0. |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
273 start_time = time.clock() |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
274 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
275 done_looping = False |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
276 epoch = 0 |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
277 iter = 0 |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
278 |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
279 while (epoch < training_epochs) and (not done_looping): |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
280 epoch = epoch + 1 |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
281 for x, y in dataset.train(batch_size): |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
282 |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
283 cost_ij = network.finetune(x, y) |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
284 iter += 1 |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
285 |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
286 if iter % validation_frequency == 0: |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
287 validation_losses = [test_model(xv, yv) for xv, yv in dataset.valid(batch_size)] |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
288 this_validation_loss = numpy.mean(validation_losses) |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
289 print('epoch %i, iter %i, validation error %f %%' % \ |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
290 (epoch, iter, this_validation_loss*100.)) |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
291 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
292 # if we got the best validation score until now |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
293 if this_validation_loss < best_validation_loss: |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
294 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
295 #improve patience if loss improvement is good enough |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
296 if this_validation_loss < best_validation_loss * \ |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
297 improvement_threshold : |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
298 patience = max(patience, iter * patience_increase) |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
299 |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
300 # save best validation score and iteration number |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
301 best_validation_loss = this_validation_loss |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
302 best_iter = iter |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
303 |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
304 # test it on the test set |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
305 test_losses = [test_model(xt, yt) for xt, yt in dataset.test(batch_size)] |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
306 test_score = numpy.mean(test_losses) |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
307 print((' epoch %i, iter %i, test error of best ' |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
308 'model %f %%') % |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
309 (epoch, iter, test_score*100.)) |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
310 |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
311 if patience <= iter : |
200
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
312 done_looping = True |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
313 break |
3f2cc90ad51c
Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents:
167
diff
changeset
|
314 |
138
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
315 end_time = time.clock() |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
316 print(('Optimization complete with best validation score of %f %%,' |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
317 'with test performance %f %%') % |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
318 (best_validation_loss * 100., test_score*100.)) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
319 print ('The code ran for %f minutes' % ((end_time-start_time)/60.)) |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
320 |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
321 if __name__ == '__main__': |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
322 sgd_optimization_mnist() |
128507ac4edf
Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff
changeset
|
323 |