annotate deep/stacked_dae/sgd_optimization.py @ 239:42005ec87747

Mergé (manuellement) les changements de Sylvain pour utiliser le code de dataset d'Arnaud, à cette différence près que je n'utilse pas les givens. J'ai probablement une approche différente pour limiter la taille du dataset dans mon débuggage, aussi.
author fsavard
date Mon, 15 Mar 2010 18:30:21 -0400
parents acb942530923
children 7b4507295eba
rev   line source
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
1 #!/usr/bin/python
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
2 # coding: utf-8
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
3
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
4 # Generic SdA optimization loop, adapted from the deeplearning.net tutorial
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
5
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
6 import numpy
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
7 import theano
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
8 import time
191
3632e6258642 Ajouts mineurs à stacked_dae, juste printé l'heure je crois.
fsavard
parents: 186
diff changeset
9 import datetime
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
10 import theano.tensor as T
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
11 import sys
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
12
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
13 from jobman import DD
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
14 import jobman, jobman.sql
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
15
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
16 from stacked_dae import SdA
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
17
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
18 def shared_dataset(data_xy):
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
19 data_x, data_y = data_xy
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
20 #shared_x = theano.shared(numpy.asarray(data_x, dtype=theano.config.floatX))
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
21 #shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX))
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
22 #shared_y = T.cast(shared_y, 'int32')
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
23 shared_x = theano.shared(data_x)
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
24 shared_y = theano.shared(data_y)
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
25 return shared_x, shared_y
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
26
185
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
27 class DummyMux():
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
28 def append(self, param1, param2):
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
29 pass
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
30
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
31 class SdaSgdOptimizer:
185
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
32 def __init__(self, dataset, hyperparameters, n_ins, n_outs, input_divider=1.0, series_mux=None):
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
33 self.dataset = dataset
185
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
34 self.hp = hyperparameters
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
35 self.n_ins = n_ins
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
36 self.n_outs = n_outs
186
d364a130b221 Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents: 185
diff changeset
37 self.input_divider = input_divider
185
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
38
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
39 if not series_mux:
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
40 series_mux = DummyMux()
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
41 print "No series multiplexer set"
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
42 self.series_mux = series_mux
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
43
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
44 self.rng = numpy.random.RandomState(1234)
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
45
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
46 self.init_datasets()
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
47 self.init_classifier()
185
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
48
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
49 sys.stdout.flush()
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
50
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
51 def init_datasets(self):
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
52 print "init_datasets"
185
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
53 sys.stdout.flush()
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
54
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
55 train_set, valid_set, test_set = self.dataset
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
56 self.test_set_x, self.test_set_y = shared_dataset(test_set)
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
57 self.valid_set_x, self.valid_set_y = shared_dataset(valid_set)
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
58 self.train_set_x, self.train_set_y = shared_dataset(train_set)
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
59
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
60 # compute number of minibatches for training, validation and testing
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
61 self.n_train_batches = self.train_set_x.value.shape[0] / self.hp.minibatch_size
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
62 self.n_valid_batches = self.valid_set_x.value.shape[0] / self.hp.minibatch_size
192
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
63 # remove last batch in case it's incomplete
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
64 self.n_test_batches = (self.test_set_x.value.shape[0] / self.hp.minibatch_size) - 1
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
65
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
66 def init_classifier(self):
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
67 print "Constructing classifier"
185
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
68
192
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
69 # we don't want to save arrays in DD objects, so
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
70 # we recreate those arrays here
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
71 nhl = self.hp.num_hidden_layers
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
72 layers_sizes = [self.hp.hidden_layers_sizes] * nhl
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
73 corruption_levels = [self.hp.corruption_levels] * nhl
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
74
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
75 # construct the stacked denoising autoencoder class
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
76 self.classifier = SdA( \
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
77 train_set_x= self.train_set_x, \
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
78 train_set_y = self.train_set_y,\
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
79 batch_size = self.hp.minibatch_size, \
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
80 n_ins= self.n_ins, \
192
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
81 hidden_layers_sizes = layers_sizes, \
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
82 n_outs = self.n_outs, \
192
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
83 corruption_levels = corruption_levels,\
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
84 rng = self.rng,\
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
85 pretrain_lr = self.hp.pretraining_lr, \
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
86 finetune_lr = self.hp.finetuning_lr,\
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
87 input_divider = self.input_divider )
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
88
208
acb942530923 Completely rewrote my series module, now based on HDF5 and PyTables (in a separate directory called 'tables_series' for retrocompatibility of running code). Minor (inconsequential) changes to stacked_dae.
fsavard
parents: 192
diff changeset
89 #theano.printing.pydotprint(self.classifier.pretrain_functions[0], "function.graph")
acb942530923 Completely rewrote my series module, now based on HDF5 and PyTables (in a separate directory called 'tables_series' for retrocompatibility of running code). Minor (inconsequential) changes to stacked_dae.
fsavard
parents: 192
diff changeset
90
185
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
91 sys.stdout.flush()
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
92
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
93 def train(self):
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
94 self.pretrain()
185
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
95 self.finetune()
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
96
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
97 def pretrain(self):
191
3632e6258642 Ajouts mineurs à stacked_dae, juste printé l'heure je crois.
fsavard
parents: 186
diff changeset
98 print "STARTING PRETRAINING, time = ", datetime.datetime.now()
185
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
99 sys.stdout.flush()
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
100
208
acb942530923 Completely rewrote my series module, now based on HDF5 and PyTables (in a separate directory called 'tables_series' for retrocompatibility of running code). Minor (inconsequential) changes to stacked_dae.
fsavard
parents: 192
diff changeset
101 #time_acc_func = 0.0
acb942530923 Completely rewrote my series module, now based on HDF5 and PyTables (in a separate directory called 'tables_series' for retrocompatibility of running code). Minor (inconsequential) changes to stacked_dae.
fsavard
parents: 192
diff changeset
102 #time_acc_total = 0.0
acb942530923 Completely rewrote my series module, now based on HDF5 and PyTables (in a separate directory called 'tables_series' for retrocompatibility of running code). Minor (inconsequential) changes to stacked_dae.
fsavard
parents: 192
diff changeset
103
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
104 start_time = time.clock()
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
105 ## Pre-train layer-wise
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
106 for i in xrange(self.classifier.n_layers):
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
107 # go through pretraining epochs
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
108 for epoch in xrange(self.hp.pretraining_epochs_per_layer):
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
109 # go through the training set
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
110 for batch_index in xrange(self.n_train_batches):
208
acb942530923 Completely rewrote my series module, now based on HDF5 and PyTables (in a separate directory called 'tables_series' for retrocompatibility of running code). Minor (inconsequential) changes to stacked_dae.
fsavard
parents: 192
diff changeset
111 #t1 = time.clock()
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
112 c = self.classifier.pretrain_functions[i](batch_index)
208
acb942530923 Completely rewrote my series module, now based on HDF5 and PyTables (in a separate directory called 'tables_series' for retrocompatibility of running code). Minor (inconsequential) changes to stacked_dae.
fsavard
parents: 192
diff changeset
113 #t2 = time.clock()
acb942530923 Completely rewrote my series module, now based on HDF5 and PyTables (in a separate directory called 'tables_series' for retrocompatibility of running code). Minor (inconsequential) changes to stacked_dae.
fsavard
parents: 192
diff changeset
114
acb942530923 Completely rewrote my series module, now based on HDF5 and PyTables (in a separate directory called 'tables_series' for retrocompatibility of running code). Minor (inconsequential) changes to stacked_dae.
fsavard
parents: 192
diff changeset
115 #time_acc_func += t2 - t1
acb942530923 Completely rewrote my series module, now based on HDF5 and PyTables (in a separate directory called 'tables_series' for retrocompatibility of running code). Minor (inconsequential) changes to stacked_dae.
fsavard
parents: 192
diff changeset
116
acb942530923 Completely rewrote my series module, now based on HDF5 and PyTables (in a separate directory called 'tables_series' for retrocompatibility of running code). Minor (inconsequential) changes to stacked_dae.
fsavard
parents: 192
diff changeset
117 #if batch_index % 500 == 0:
acb942530923 Completely rewrote my series module, now based on HDF5 and PyTables (in a separate directory called 'tables_series' for retrocompatibility of running code). Minor (inconsequential) changes to stacked_dae.
fsavard
parents: 192
diff changeset
118 # print "acc / total", time_acc_func / (t2 - start_time), time_acc_func
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
119
185
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
120 self.series_mux.append("reconstruction_error", c)
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
121
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
122 print 'Pre-training layer %i, epoch %d, cost '%(i,epoch),c
185
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
123 sys.stdout.flush()
191
3632e6258642 Ajouts mineurs à stacked_dae, juste printé l'heure je crois.
fsavard
parents: 186
diff changeset
124
3632e6258642 Ajouts mineurs à stacked_dae, juste printé l'heure je crois.
fsavard
parents: 186
diff changeset
125 self.series_mux.append("params", self.classifier.all_params)
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
126
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
127 end_time = time.clock()
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
128
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
129 print ('Pretraining took %f minutes' %((end_time-start_time)/60.))
185
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
130 self.hp.update({'pretraining_time': end_time-start_time})
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
131
185
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
132 sys.stdout.flush()
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
133
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
134 def finetune(self):
191
3632e6258642 Ajouts mineurs à stacked_dae, juste printé l'heure je crois.
fsavard
parents: 186
diff changeset
135 print "STARTING FINETUNING, time = ", datetime.datetime.now()
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
136
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
137 index = T.lscalar() # index to a [mini]batch
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
138 minibatch_size = self.hp.minibatch_size
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
139
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
140 # create a function to compute the mistakes that are made by the model
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
141 # on the validation set, or testing set
186
d364a130b221 Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents: 185
diff changeset
142 shared_divider = theano.shared(numpy.asarray(self.input_divider, dtype=theano.config.floatX))
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
143 test_model = theano.function([index], self.classifier.errors,
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
144 givens = {
186
d364a130b221 Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents: 185
diff changeset
145 self.classifier.x: self.test_set_x[index*minibatch_size:(index+1)*minibatch_size] / shared_divider,
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
146 self.classifier.y: self.test_set_y[index*minibatch_size:(index+1)*minibatch_size]})
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
147
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
148 validate_model = theano.function([index], self.classifier.errors,
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
149 givens = {
186
d364a130b221 Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents: 185
diff changeset
150 self.classifier.x: self.valid_set_x[index*minibatch_size:(index+1)*minibatch_size] / shared_divider,
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
151 self.classifier.y: self.valid_set_y[index*minibatch_size:(index+1)*minibatch_size]})
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
152
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
153
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
154 # early-stopping parameters
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
155 patience = 10000 # look as this many examples regardless
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
156 patience_increase = 2. # wait this much longer when a new best is
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
157 # found
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
158 improvement_threshold = 0.995 # a relative improvement of this much is
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
159 # considered significant
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
160 validation_frequency = min(self.n_train_batches, patience/2)
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
161 # go through this many
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
162 # minibatche before checking the network
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
163 # on the validation set; in this case we
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
164 # check every epoch
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
165
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
166 best_params = None
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
167 best_validation_loss = float('inf')
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
168 test_score = 0.
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
169 start_time = time.clock()
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
170
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
171 done_looping = False
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
172 epoch = 0
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
173
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
174 while (epoch < self.hp.max_finetuning_epochs) and (not done_looping):
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
175 epoch = epoch + 1
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
176 for minibatch_index in xrange(self.n_train_batches):
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
177
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
178 cost_ij = self.classifier.finetune(minibatch_index)
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
179 iter = epoch * self.n_train_batches + minibatch_index
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
180
185
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
181 self.series_mux.append("training_error", cost_ij)
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
182
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
183 if (iter+1) % validation_frequency == 0:
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
184
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
185 validation_losses = [validate_model(i) for i in xrange(self.n_valid_batches)]
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
186 this_validation_loss = numpy.mean(validation_losses)
186
d364a130b221 Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents: 185
diff changeset
187 self.series_mux.append("validation_error", this_validation_loss)
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
188 print('epoch %i, minibatch %i/%i, validation error %f %%' % \
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
189 (epoch, minibatch_index+1, self.n_train_batches, \
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
190 this_validation_loss*100.))
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
191
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
192
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
193 # if we got the best validation score until now
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
194 if this_validation_loss < best_validation_loss:
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
195
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
196 #improve patience if loss improvement is good enough
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
197 if this_validation_loss < best_validation_loss * \
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
198 improvement_threshold :
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
199 patience = max(patience, iter * patience_increase)
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
200
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
201 # save best validation score and iteration number
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
202 best_validation_loss = this_validation_loss
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
203 best_iter = iter
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
204
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
205 # test it on the test set
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
206 test_losses = [test_model(i) for i in xrange(self.n_test_batches)]
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
207 test_score = numpy.mean(test_losses)
186
d364a130b221 Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents: 185
diff changeset
208 self.series_mux.append("test_error", test_score)
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
209 print((' epoch %i, minibatch %i/%i, test error of best '
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
210 'model %f %%') %
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
211 (epoch, minibatch_index+1, self.n_train_batches,
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
212 test_score*100.))
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
213
185
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
214 sys.stdout.flush()
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
215
186
d364a130b221 Ajout du code de base pour scalar_series. Modifications à stacked_dae: réglé un problème avec les input_divider (empêchait une optimisation), et ajouté utilisation des séries. Si j'avais pas déjà commité, aussi, j'ai enlevé l'histoire de réutilisation du pretraining: c'était compliqué (error prone) et ça créait des jobs beaucoup trop longues.
fsavard
parents: 185
diff changeset
216 self.series_mux.append("params", self.classifier.all_params)
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
217
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
218 if patience <= iter :
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
219 done_looping = True
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
220 break
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
221
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
222 end_time = time.clock()
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
223 self.hp.update({'finetuning_time':end_time-start_time,\
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
224 'best_validation_error':best_validation_loss,\
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
225 'test_score':test_score,
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
226 'num_finetuning_epochs':epoch})
185
b9ea8e2d071a Enlevé ce qui concernait la réutilisation de résultats de préentraînement (trop compliqué pour peu de bénéfice: c'est le finetuning qui est vraiment long
fsavard
parents: 167
diff changeset
227
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
228 print(('Optimization complete with best validation score of %f %%,'
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
229 'with test performance %f %%') %
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
230 (best_validation_loss * 100., test_score*100.))
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
231 print ('The finetuning ran for %f minutes' % ((end_time-start_time)/60.))
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
232
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
233
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
234