annotate code_tutoriel/mlp.py @ 373:39a3917db946

merge1
author Xavier Glorot <glorotxa@iro.umontreal.ca>
date Sun, 25 Apr 2010 13:54:57 -0400
parents 4bc5eeec6394
children
rev   line source
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
1 """
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
2 This tutorial introduces the multilayer perceptron using Theano.
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
3
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
4 A multilayer perceptron is a logistic regressor where
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
5 instead of feeding the input to the logistic regression you insert a
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
6 intermidiate layer, called the hidden layer, that has a nonlinear
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
7 activation function (usually tanh or sigmoid) . One can use many such
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
8 hidden layers making the architecture deep. The tutorial will also tackle
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
9 the problem of MNIST digit classification.
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
10
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
11 .. math::
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
12
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
13 f(x) = G( b^{(2)} + W^{(2)}( s( b^{(1)} + W^{(1)} x))),
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
14
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
15 References:
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
16
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
17 - textbooks: "Pattern Recognition and Machine Learning" -
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
18 Christopher M. Bishop, section 5
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
19
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
20 """
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
21 __docformat__ = 'restructedtext en'
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
22
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
23
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
24 import numpy, time, cPickle, gzip
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
25
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
26 import theano
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
27 import theano.tensor as T
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
28
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
29
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
30 from logistic_sgd import LogisticRegression, load_data
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
31
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
32
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
33 class HiddenLayer(object):
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
34 def __init__(self, rng, input, n_in, n_out, activation = T.tanh):
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
35 """
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
36 Typical hidden layer of a MLP: units are fully-connected and have
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
37 sigmoidal activation function. Weight matrix W is of shape (n_in,n_out)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
38 and the bias vector b is of shape (n_out,).
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
39
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
40 NOTE : The nonlinearity used here is tanh
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
41
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
42 Hidden unit activation is given by: tanh(dot(input,W) + b)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
43
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
44 :type rng: numpy.random.RandomState
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
45 :param rng: a random number generator used to initialize weights
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
46
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
47 :type input: theano.tensor.dmatrix
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
48 :param input: a symbolic tensor of shape (n_examples, n_in)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
49
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
50 :type n_in: int
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
51 :param n_in: dimensionality of input
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
52
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
53 :type n_out: int
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
54 :param n_out: number of hidden units
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
55
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
56 :type activation: theano.Op or function
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
57 :param activation: Non linearity to be applied in the hidden
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
58 layer
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
59 """
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
60 self.input = input
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
61
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
62 # `W` is initialized with `W_values` which is uniformely sampled
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
63 # from -6./sqrt(n_in+n_hidden) and 6./sqrt(n_in+n_hidden)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
64 # the output of uniform if converted using asarray to dtype
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
65 # theano.config.floatX so that the code is runable on GPU
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
66 W_values = numpy.asarray( rng.uniform( \
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
67 low = -numpy.sqrt(6./(n_in+n_out)), \
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
68 high = numpy.sqrt(6./(n_in+n_out)), \
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
69 size = (n_in, n_out)), dtype = theano.config.floatX)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
70 self.W = theano.shared(value = W_values)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
71
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
72 b_values = numpy.zeros((n_out,), dtype= theano.config.floatX)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
73 self.b = theano.shared(value= b_values)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
74
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
75 self.output = activation(T.dot(input, self.W) + self.b)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
76 # parameters of the model
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
77 self.params = [self.W, self.b]
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
78
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
79
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
80 class MLP(object):
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
81 """Multi-Layer Perceptron Class
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
82
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
83 A multilayer perceptron is a feedforward artificial neural network model
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
84 that has one layer or more of hidden units and nonlinear activations.
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
85 Intermidiate layers usually have as activation function thanh or the
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
86 sigmoid function (defined here by a ``SigmoidalLayer`` class) while the
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
87 top layer is a softamx layer (defined here by a ``LogisticRegression``
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
88 class).
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
89 """
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
90
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
91
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
92
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
93 def __init__(self, rng, input, n_in, n_hidden, n_out):
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
94 """Initialize the parameters for the multilayer perceptron
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
95
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
96 :type rng: numpy.random.RandomState
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
97 :param rng: a random number generator used to initialize weights
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
98
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
99 :type input: theano.tensor.TensorType
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
100 :param input: symbolic variable that describes the input of the
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
101 architecture (one minibatch)
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
102
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
103 :type n_in: int
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
104 :param n_in: number of input units, the dimension of the space in
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
105 which the datapoints lie
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
106
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
107 :type n_hidden: int
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
108 :param n_hidden: number of hidden units
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
109
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
110 :type n_out: int
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
111 :param n_out: number of output units, the dimension of the space in
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
112 which the labels lie
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
113
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
114 """
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
115
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
116 # Since we are dealing with a one hidden layer MLP, this will
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
117 # translate into a TanhLayer connected to the LogisticRegression
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
118 # layer; this can be replaced by a SigmoidalLayer, or a layer
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
119 # implementing any other nonlinearity
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
120 self.hiddenLayer = HiddenLayer(rng = rng, input = input,
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
121 n_in = n_in, n_out = n_hidden,
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
122 activation = T.tanh)
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
123
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
124 # The logistic regression layer gets as input the hidden units
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
125 # of the hidden layer
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
126 self.logRegressionLayer = LogisticRegression(
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
127 input = self.hiddenLayer.output,
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
128 n_in = n_hidden,
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
129 n_out = n_out)
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
130
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
131 # L1 norm ; one regularization option is to enforce L1 norm to
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
132 # be small
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
133 self.L1 = abs(self.hiddenLayer.W).sum() \
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
134 + abs(self.logRegressionLayer.W).sum()
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
135
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
136 # square of L2 norm ; one regularization option is to enforce
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
137 # square of L2 norm to be small
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
138 self.L2_sqr = (self.hiddenLayer.W**2).sum() \
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
139 + (self.logRegressionLayer.W**2).sum()
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
140
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
141 # negative log likelihood of the MLP is given by the negative
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
142 # log likelihood of the output of the model, computed in the
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
143 # logistic regression layer
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
144 self.negative_log_likelihood = self.logRegressionLayer.negative_log_likelihood
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
145 # same holds for the function computing the number of errors
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
146 self.errors = self.logRegressionLayer.errors
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
147
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
148 # the parameters of the model are the parameters of the two layer it is
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
149 # made out of
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
150 self.params = self.hiddenLayer.params + self.logRegressionLayer.params
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
151
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
152
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
153 def test_mlp( learning_rate=0.01, L1_reg = 0.00, L2_reg = 0.0001, n_epochs=1000,
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
154 dataset = 'mnist.pkl.gz'):
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
155 """
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
156 Demonstrate stochastic gradient descent optimization for a multilayer
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
157 perceptron
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
158
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
159 This is demonstrated on MNIST.
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
160
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
161 :type learning_rate: float
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
162 :param learning_rate: learning rate used (factor for the stochastic
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
163 gradient
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
164
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
165 :type L1_reg: float
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
166 :param L1_reg: L1-norm's weight when added to the cost (see
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
167 regularization)
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
168
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
169 :type L2_reg: float
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
170 :param L2_reg: L2-norm's weight when added to the cost (see
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
171 regularization)
2
bcc87d3e33a3 adding latest tutorial code
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 0
diff changeset
172
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
173 :type n_epochs: int
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
174 :param n_epochs: maximal number of epochs to run the optimizer
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
175
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
176 :type dataset: string
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
177 :param dataset: the path of the MNIST dataset file from
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
178 http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
179
2
bcc87d3e33a3 adding latest tutorial code
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 0
diff changeset
180
bcc87d3e33a3 adding latest tutorial code
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 0
diff changeset
181 """
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
182 datasets = load_data(dataset)
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
183
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
184 train_set_x, train_set_y = datasets[0]
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
185 valid_set_x, valid_set_y = datasets[1]
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
186 test_set_x , test_set_y = datasets[2]
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
187
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
188
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
189
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
190 batch_size = 20 # size of the minibatch
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
191
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
192 # compute number of minibatches for training, validation and testing
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
193 n_train_batches = train_set_x.value.shape[0] / batch_size
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
194 n_valid_batches = valid_set_x.value.shape[0] / batch_size
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
195 n_test_batches = test_set_x.value.shape[0] / batch_size
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
196
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
197 ######################
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
198 # BUILD ACTUAL MODEL #
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
199 ######################
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
200 print '... building the model'
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
201
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
202 # allocate symbolic variables for the data
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
203 index = T.lscalar() # index to a [mini]batch
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
204 x = T.matrix('x') # the data is presented as rasterized images
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
205 y = T.ivector('y') # the labels are presented as 1D vector of
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
206 # [int] labels
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
207
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
208 rng = numpy.random.RandomState(1234)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
209
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
210 # construct the MLP class
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
211 classifier = MLP( rng = rng, input=x, n_in=28*28, n_hidden = 500, n_out=10)
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
212
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
213 # the cost we minimize during training is the negative log likelihood of
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
214 # the model plus the regularization terms (L1 and L2); cost is expressed
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
215 # here symbolically
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
216 cost = classifier.negative_log_likelihood(y) \
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
217 + L1_reg * classifier.L1 \
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
218 + L2_reg * classifier.L2_sqr
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
219
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
220 # compiling a Theano function that computes the mistakes that are made
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
221 # by the model on a minibatch
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
222 test_model = theano.function(inputs = [index],
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
223 outputs = classifier.errors(y),
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
224 givens={
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
225 x:test_set_x[index*batch_size:(index+1)*batch_size],
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
226 y:test_set_y[index*batch_size:(index+1)*batch_size]})
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
227
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
228 validate_model = theano.function(inputs = [index],
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
229 outputs = classifier.errors(y),
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
230 givens={
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
231 x:valid_set_x[index*batch_size:(index+1)*batch_size],
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
232 y:valid_set_y[index*batch_size:(index+1)*batch_size]})
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
233
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
234 # compute the gradient of cost with respect to theta (sotred in params)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
235 # the resulting gradients will be stored in a list gparams
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
236 gparams = []
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
237 for param in classifier.params:
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
238 gparam = T.grad(cost, param)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
239 gparams.append(gparam)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
240
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
241
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
242 # specify how to update the parameters of the model as a dictionary
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
243 updates = {}
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
244 # given two list the zip A = [ a1,a2,a3,a4] and B = [b1,b2,b3,b4] of
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
245 # same length, zip generates a list C of same size, where each element
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
246 # is a pair formed from the two lists :
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
247 # C = [ (a1,b1), (a2,b2), (a3,b3) , (a4,b4) ]
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
248 for param, gparam in zip(classifier.params, gparams):
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
249 updates[param] = param - learning_rate*gparam
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
250
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
251 # compiling a Theano function `train_model` that returns the cost, but
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
252 # in the same time updates the parameter of the model based on the rules
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
253 # defined in `updates`
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
254 train_model =theano.function( inputs = [index], outputs = cost,
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
255 updates = updates,
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
256 givens={
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
257 x:train_set_x[index*batch_size:(index+1)*batch_size],
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
258 y:train_set_y[index*batch_size:(index+1)*batch_size]})
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
259
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
260 ###############
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
261 # TRAIN MODEL #
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
262 ###############
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
263 print '... training'
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
264
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
265 # early-stopping parameters
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
266 patience = 10000 # look as this many examples regardless
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
267 patience_increase = 2 # wait this much longer when a new best is
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
268 # found
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
269 improvement_threshold = 0.995 # a relative improvement of this much is
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
270 # considered significant
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
271 validation_frequency = min(n_train_batches,patience/2)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
272 # go through this many
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
273 # minibatche before checking the network
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
274 # on the validation set; in this case we
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
275 # check every epoch
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
276
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
277
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
278 best_params = None
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
279 best_validation_loss = float('inf')
2
bcc87d3e33a3 adding latest tutorial code
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 0
diff changeset
280 best_iter = 0
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
281 test_score = 0.
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
282 start_time = time.clock()
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
283
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
284 epoch = 0
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
285 done_looping = False
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
286
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
287 while (epoch < n_epochs) and (not done_looping):
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
288 epoch = epoch + 1
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
289 for minibatch_index in xrange(n_train_batches):
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
290
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
291 minibatch_avg_cost = train_model(minibatch_index)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
292 # iteration number
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
293 iter = epoch * n_train_batches + minibatch_index
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
294
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
295 if (iter+1) % validation_frequency == 0:
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
296 # compute zero-one loss on validation set
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
297 validation_losses = [validate_model(i) for i in xrange(n_valid_batches)]
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
298 this_validation_loss = numpy.mean(validation_losses)
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
299
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
300 print('epoch %i, minibatch %i/%i, validation error %f %%' % \
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
301 (epoch, minibatch_index+1,n_train_batches, \
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
302 this_validation_loss*100.))
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
303
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
304
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
305 # if we got the best validation score until now
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
306 if this_validation_loss < best_validation_loss:
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
307 #improve patience if loss improvement is good enough
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
308 if this_validation_loss < best_validation_loss * \
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
309 improvement_threshold :
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
310 patience = max(patience, iter * patience_increase)
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
311
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
312 best_validation_loss = this_validation_loss
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
313 # test it on the test set
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
314
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
315 test_losses = [test_model(i) for i in xrange(n_test_batches)]
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
316 test_score = numpy.mean(test_losses)
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
317
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
318 print((' epoch %i, minibatch %i/%i, test error of best '
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
319 'model %f %%') % \
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
320 (epoch, minibatch_index+1, n_train_batches,test_score*100.))
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
321
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
322 if patience <= iter :
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
323 done_looping = True
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
324 break
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
325
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
326
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
327 end_time = time.clock()
2
bcc87d3e33a3 adding latest tutorial code
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 0
diff changeset
328 print(('Optimization complete. Best validation score of %f %% '
bcc87d3e33a3 adding latest tutorial code
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 0
diff changeset
329 'obtained at iteration %i, with test performance %f %%') %
bcc87d3e33a3 adding latest tutorial code
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 0
diff changeset
330 (best_validation_loss * 100., best_iter, test_score*100.))
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
331 print ('The code ran for %f minutes' % ((end_time-start_time)/60.))
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
332
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
333
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
334 if __name__ == '__main__':
165
4bc5eeec6394 Updating the tutorial code to the latest revisions.
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 18
diff changeset
335 test_mlp()
0
fda5f787baa6 commit initial
Dumitru Erhan <dumitru.erhan@gmail.com>
parents:
diff changeset
336