Mercurial > ift6266
annotate baseline/log_reg/log_reg.py @ 434:310c730516af
added description of nist19 and captcha data sources
author | goldfinger |
---|---|
date | Mon, 03 May 2010 03:08:34 -0400 |
parents | a92ec9939e4f |
children | 5541056d3fb0 |
rev | line source |
---|---|
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
1 """ |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
2 This tutorial introduces logistic regression using Theano and stochastic |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
3 gradient descent. |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
4 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
5 Logistic regression is a probabilistic, linear classifier. It is parametrized |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
6 by a weight matrix :math:`W` and a bias vector :math:`b`. Classification is |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
7 done by projecting data points onto a set of hyperplanes, the distance to |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
8 which is used to determine a class membership probability. |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
9 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
10 Mathematically, this can be written as: |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
11 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
12 .. math:: |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
13 P(Y=i|x, W,b) &= softmax_i(W x + b) \\ |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
14 &= \frac {e^{W_i x + b_i}} {\sum_j e^{W_j x + b_j}} |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
15 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
16 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
17 The output of the model or prediction is then done by taking the argmax of |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
18 the vector whose i'th element is P(Y=i|x). |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
19 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
20 .. math:: |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
21 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
22 y_{pred} = argmax_i P(Y=i|x,W,b) |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
23 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
24 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
25 This tutorial presents a stochastic gradient descent optimization method |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
26 suitable for large datasets, and a conjugate gradient optimization method |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
27 that is suitable for smaller datasets. |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
28 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
29 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
30 References: |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
31 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
32 - textbooks: "Pattern Recognition and Machine Learning" - |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
33 Christopher M. Bishop, section 4.3.2 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
34 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
35 """ |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
36 __docformat__ = 'restructedtext en' |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
37 |
198
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
38 import numpy, time |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
39 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
40 import theano |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
41 import theano.tensor as T |
198
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
42 from ift6266 import datasets |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
43 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
44 class LogisticRegression(object): |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
45 """Multi-class Logistic Regression Class |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
46 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
47 The logistic regression is fully described by a weight matrix :math:`W` |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
48 and bias vector :math:`b`. Classification is done by projecting data |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
49 points onto a set of hyperplanes, the distance to which is used to |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
50 determine a class membership probability. |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
51 """ |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
52 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
53 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
54 def __init__( self, input, n_in, n_out ): |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
55 """ Initialize the parameters of the logistic regression |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
56 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
57 :type input: theano.tensor.TensorType |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
58 :param input: symbolic variable that describes the input of the |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
59 architecture (one minibatch) |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
60 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
61 :type n_in: int |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
62 :param n_in: number of input units, the dimension of the space in |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
63 which the datapoints lie |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
64 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
65 :type n_out: int |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
66 :param n_out: number of output units, the dimension of the space in |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
67 which the labels lie |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
68 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
69 """ |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
70 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
71 # initialize with 0 the weights W as a matrix of shape (n_in, n_out) |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
72 self.W = theano.shared( value = numpy.zeros(( n_in, n_out ), dtype = theano.config.floatX ), |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
73 name =' W') |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
74 # initialize the baises b as a vector of n_out 0s |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
75 self.b = theano.shared( value = numpy.zeros(( n_out, ), dtype = theano.config.floatX ), |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
76 name = 'b') |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
77 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
78 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
79 # compute vector of class-membership probabilities in symbolic form |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
80 self.p_y_given_x = T.nnet.softmax( T.dot( input, self.W ) + self.b ) |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
81 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
82 # compute prediction as class whose probability is maximal in |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
83 # symbolic form |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
84 self.y_pred=T.argmax( self.p_y_given_x, axis =1 ) |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
85 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
86 # parameters of the model |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
87 self.params = [ self.W, self.b ] |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
88 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
89 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
90 def negative_log_likelihood( self, y ): |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
91 """Return the mean of the negative log-likelihood of the prediction |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
92 of this model under a given target distribution. |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
93 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
94 .. math:: |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
95 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
96 \frac{1}{|\mathcal{D}|} \mathcal{L} (\theta=\{W,b\}, \mathcal{D}) = |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
97 \frac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|} \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\ |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
98 \ell (\theta=\{W,b\}, \mathcal{D}) |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
99 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
100 :type y: theano.tensor.TensorType |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
101 :param y: corresponds to a vector that gives for each example the |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
102 correct label |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
103 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
104 Note: we use the mean instead of the sum so that |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
105 the learning rate is less dependent on the batch size |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
106 """ |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
107 # y.shape[0] is (symbolically) the number of rows in y, i.e., number of examples (call it n) in the minibatch |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
108 # T.arange(y.shape[0]) is a symbolic vector which will contain [0,1,2,... n-1] |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
109 # T.log(self.p_y_given_x) is a matrix of Log-Probabilities (call it LP) with one row per example and one column per class |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
110 # LP[T.arange(y.shape[0]),y] is a vector v containing [LP[0,y[0]], LP[1,y[1]], LP[2,y[2]], ..., LP[n-1,y[n-1]]] |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
111 # and T.mean(LP[T.arange(y.shape[0]),y]) is the mean (across minibatch examples) of the elements in v, |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
112 # i.e., the mean log-likelihood across the minibatch. |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
113 return -T.mean( T.log( self.p_y_given_x )[ T.arange( y.shape[0] ), y ] ) |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
114 |
199
777f48ba30df
Add MSE cost to log_reg.py
Arnaud Bergeron <abergeron@gmail.com>
parents:
198
diff
changeset
|
115 def MSE(self, y): |
777f48ba30df
Add MSE cost to log_reg.py
Arnaud Bergeron <abergeron@gmail.com>
parents:
198
diff
changeset
|
116 return -T.mean(abs((self.p_t_given_x)[T.arange(y.shape[0]), y]-y)**2) |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
117 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
118 def errors( self, y ): |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
119 """Return a float representing the number of errors in the minibatch |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
120 over the total number of examples of the minibatch ; zero one |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
121 loss over the size of the minibatch |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
122 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
123 :type y: theano.tensor.TensorType |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
124 :param y: corresponds to a vector that gives for each example the |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
125 correct label |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
126 """ |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
127 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
128 # check if y has same dimension of y_pred |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
129 if y.ndim != self.y_pred.ndim: |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
130 raise TypeError( 'y should have the same shape as self.y_pred', |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
131 ( 'y', target.type, 'y_pred', self.y_pred.type ) ) |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
132 # check if y is of the correct datatype |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
133 if y.dtype.startswith('int'): |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
134 # the T.neq operator returns a vector of 0s and 1s, where 1 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
135 # represents a mistake in prediction |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
136 return T.mean( T.neq( self.y_pred, y ) ) |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
137 else: |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
138 raise NotImplementedError() |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
139 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
140 #-------------------------------------------------------------------------------------------------------------------- |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
141 # MAIN |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
142 #-------------------------------------------------------------------------------------------------------------------- |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
143 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
144 def log_reg( learning_rate = 0.13, nb_max_examples =1000000, batch_size = 50, \ |
271
a92ec9939e4f
fixed a problem with maxsize when not provided
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
241
diff
changeset
|
145 dataset=datasets.nist_digits(), image_size = 32 * 32, nb_class = 10, \ |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
146 patience = 5000, patience_increase = 2, improvement_threshold = 0.995): |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
147 |
236
7be1f086a89e
added __init__.py to allow module loading of baseline
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
199
diff
changeset
|
148 #28 * 28 = 784 |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
149 """ |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
150 Demonstrate stochastic gradient descent optimization of a log-linear |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
151 model |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
152 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
153 This is demonstrated on MNIST. |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
154 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
155 :type learning_rate: float |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
156 :param learning_rate: learning rate used (factor for the stochastic |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
157 gradient) |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
158 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
159 :type nb_max_examples: int |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
160 :param nb_max_examples: maximal number of epochs to run the optimizer |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
161 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
162 :type batch_size: int |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
163 :param batch_size: size of the minibatch |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
164 |
198
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
165 :type dataset: dataset |
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
166 :param dataset: a dataset instance from ift6266.datasets |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
167 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
168 :type image_size: int |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
169 :param image_size: size of the input image in pixels (width * height) |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
170 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
171 :type nb_class: int |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
172 :param nb_class: number of classes |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
173 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
174 :type patience: int |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
175 :param patience: look as this many examples regardless |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
176 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
177 :type patience_increase: int |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
178 :param patience_increase: wait this much longer when a new best is found |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
179 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
180 :type improvement_threshold: float |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
181 :param improvement_threshold: a relative improvement of this much is considered significant |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
182 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
183 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
184 """ |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
185 #-------------------------------------------------------------------------------------------------------------------- |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
186 # Build actual model |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
187 #-------------------------------------------------------------------------------------------------------------------- |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
188 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
189 print '... building the model' |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
190 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
191 # allocate symbolic variables for the data |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
192 index = T.lscalar( ) # index to a [mini]batch |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
193 x = T.matrix('x') # the data is presented as rasterized images |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
194 y = T.ivector('y') # the labels are presented as 1D vector of |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
195 # [int] labels |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
196 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
197 # construct the logistic regression class |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
198 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
199 classifier = LogisticRegression( input = x, n_in = image_size, n_out = nb_class ) |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
200 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
201 # the cost we minimize during training is the negative log likelihood of |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
202 # the model in symbolic format |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
203 cost = classifier.negative_log_likelihood( y ) |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
204 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
205 # compiling a Theano function that computes the mistakes that are made by |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
206 # the model on a minibatch |
198
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
207 test_model = theano.function( inputs = [ x, y ], |
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
208 outputs = classifier.errors( y )) |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
209 |
198
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
210 validate_model = theano.function( inputs = [ x, y ], |
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
211 outputs = classifier.errors( y )) |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
212 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
213 # compute the gradient of cost with respect to theta = ( W, b ) |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
214 g_W = T.grad( cost = cost, wrt = classifier.W ) |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
215 g_b = T.grad( cost = cost, wrt = classifier.b ) |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
216 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
217 # specify how to update the parameters of the model as a dictionary |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
218 updates = { classifier.W: classifier.W - learning_rate * g_W,\ |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
219 classifier.b: classifier.b - learning_rate * g_b} |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
220 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
221 # compiling a Theano function `train_model` that returns the cost, but in |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
222 # the same time updates the parameter of the model based on the rules |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
223 # defined in `updates` |
198
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
224 train_model = theano.function( inputs = [ x, y ], |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
225 outputs = cost, |
198
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
226 updates = updates) |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
227 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
228 #-------------------------------------------------------------------------------------------------------------------- |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
229 # Train model |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
230 #-------------------------------------------------------------------------------------------------------------------- |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
231 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
232 print '... training the model' |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
233 # early-stopping parameters |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
234 patience = 5000 # look as this many examples regardless |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
235 patience_increase = 2 # wait this much longer when a new best is |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
236 # found |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
237 improvement_threshold = 0.995 # a relative improvement of this much is |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
238 # considered significant |
198
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
239 validation_frequency = patience * 0.5 |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
240 # go through this many |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
241 # minibatche before checking the network |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
242 # on the validation set; in this case we |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
243 # check every epoch |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
244 |
198
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
245 best_params = None |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
246 best_validation_loss = float('inf') |
198
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
247 test_score = 0. |
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
248 start_time = time.clock() |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
249 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
250 done_looping = False |
198
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
251 n_iters = nb_max_examples / batch_size |
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
252 epoch = 0 |
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
253 iter = 0 |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
254 |
198
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
255 while ( iter < n_iters ) and ( not done_looping ): |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
256 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
257 epoch = epoch + 1 |
198
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
258 for x, y in dataset.train(batch_size): |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
259 |
198
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
260 minibatch_avg_cost = train_model( x, y ) |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
261 # iteration number |
198
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
262 iter += 1 |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
263 |
198
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
264 if iter % validation_frequency == 0: |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
265 # compute zero-one loss on validation set |
198
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
266 validation_losses = [ validate_model( xv, yv ) for xv, yv in dataset.valid(batch_size) ] |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
267 this_validation_loss = numpy.mean( validation_losses ) |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
268 |
198
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
269 print('epoch %i, iter %i, validation error %f %%' % \ |
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
270 ( epoch, iter, this_validation_loss*100. ) ) |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
271 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
272 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
273 # if we got the best validation score until now |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
274 if this_validation_loss < best_validation_loss: |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
275 #improve patience if loss improvement is good enough |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
276 if this_validation_loss < best_validation_loss * \ |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
277 improvement_threshold : |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
278 patience = max( patience, iter * patience_increase ) |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
279 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
280 best_validation_loss = this_validation_loss |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
281 # test it on the test set |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
282 |
198
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
283 test_losses = [test_model(xt, yt) for xt, yt in dataset.test(batch_size)] |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
284 test_score = numpy.mean(test_losses) |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
285 |
198
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
286 print((' epoch %i, iter %i, test error of best ' |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
287 'model %f %%') % \ |
198
5d88ed99c0af
Modify the log_reg.py tutorial code to use the datasets module.
Arnaud Bergeron <abergeron@gmail.com>
parents:
169
diff
changeset
|
288 (epoch, iter, test_score*100.)) |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
289 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
290 if patience <= iter : |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
291 done_looping = True |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
292 break |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
293 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
294 end_time = time.clock() |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
295 print(('Optimization complete with best validation score of %f %%,' |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
296 'with test performance %f %%') % |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
297 ( best_validation_loss * 100., test_score * 100.)) |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
298 print ('The code ran for %f minutes' % ((end_time-start_time) / 60.)) |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
299 |
236
7be1f086a89e
added __init__.py to allow module loading of baseline
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
199
diff
changeset
|
300 return best_validation_loss, test_score, iter*batch_size, (end_time-start_time) / 60. |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
301 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
302 if __name__ == '__main__': |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
303 log_reg() |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
304 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
305 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
306 def jobman_log_reg(state, channel): |
236
7be1f086a89e
added __init__.py to allow module loading of baseline
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
199
diff
changeset
|
307 print state |
7be1f086a89e
added __init__.py to allow module loading of baseline
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
199
diff
changeset
|
308 (validation_error, test_error, nb_exemples, time) = log_reg( learning_rate = state.learning_rate, \ |
7be1f086a89e
added __init__.py to allow module loading of baseline
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
199
diff
changeset
|
309 nb_max_examples = state.nb_max_examples, \ |
7be1f086a89e
added __init__.py to allow module loading of baseline
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
199
diff
changeset
|
310 batch_size = state.batch_size,\ |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
311 image_size = state.image_size, \ |
236
7be1f086a89e
added __init__.py to allow module loading of baseline
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
199
diff
changeset
|
312 nb_class = state.nb_class, \ |
7be1f086a89e
added __init__.py to allow module loading of baseline
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
199
diff
changeset
|
313 patience = state.patience, \ |
7be1f086a89e
added __init__.py to allow module loading of baseline
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
199
diff
changeset
|
314 patience_increase = state.patience_increase, \ |
7be1f086a89e
added __init__.py to allow module loading of baseline
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
199
diff
changeset
|
315 improvement_threshold = state.improvement_threshold ) |
241
c24020aa38ac
fix call to log_reg
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
236
diff
changeset
|
316 |
c24020aa38ac
fix call to log_reg
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
236
diff
changeset
|
317 |
236
7be1f086a89e
added __init__.py to allow module loading of baseline
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
199
diff
changeset
|
318 print state |
158
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
319 state.validation_error = validation_error |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
320 state.test_error = test_error |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
321 state.nb_exemples = nb_exemples |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
322 state.time = time |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
323 return channel.COMPLETE |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
324 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
325 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
326 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
327 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
328 |
d1bb6e06497a
nouveau répertoire régression logistique
Myriam Cote <cotemyri@iro.umontreal.ca>
parents:
diff
changeset
|
329 |