396
|
1 """ This file contains different utility functions that are not connected
|
|
2 in anyway to the networks presented in the tutorials, but rather help in
|
|
3 processing the outputs into a more understandable way.
|
|
4
|
|
5 For example ``tile_raster_images`` helps in generating a easy to grasp
|
|
6 image from a set of samples or weights.
|
|
7 """
|
|
8
|
|
9
|
|
10 import numpy
|
|
11
|
|
12
|
|
13 def scale_to_unit_interval(ndar,eps=1e-8):
|
|
14 """ Scales all values in the ndarray ndar to be between 0 and 1 """
|
|
15 ndar = ndar.copy()
|
|
16 ndar -= ndar.min()
|
|
17 ndar *= 1.0 / (ndar.max()+eps)
|
|
18 return ndar
|
|
19
|
|
20
|
|
21 def tile_raster_images(X, img_shape, tile_shape,tile_spacing = (0,0),
|
|
22 scale_rows_to_unit_interval = True, output_pixel_vals = True):
|
|
23 """
|
|
24 Transform an array with one flattened image per row, into an array in
|
|
25 which images are reshaped and layed out like tiles on a floor.
|
|
26
|
|
27 This function is useful for visualizing datasets whose rows are images,
|
|
28 and also columns of matrices for transforming those rows
|
|
29 (such as the first layer of a neural net).
|
|
30
|
|
31 :type X: a 2-D ndarray or a tuple of 4 channels, elements of which can
|
|
32 be 2-D ndarrays or None;
|
|
33 :param X: a 2-D array in which every row is a flattened image.
|
|
34
|
|
35 :type img_shape: tuple; (height, width)
|
|
36 :param img_shape: the original shape of each image
|
|
37
|
|
38 :type tile_shape: tuple; (rows, cols)
|
|
39 :param tile_shape: the number of images to tile (rows, cols)
|
|
40
|
|
41 :param output_pixel_vals: if output should be pixel values (i.e. int8
|
|
42 values) or floats
|
|
43
|
|
44 :param scale_rows_to_unit_interval: if the values need to be scaled before
|
|
45 being plotted to [0,1] or not
|
|
46
|
|
47
|
|
48 :returns: array suitable for viewing as an image.
|
|
49 (See:`PIL.Image.fromarray`.)
|
|
50 :rtype: a 2-d array with same dtype as X.
|
|
51
|
|
52 """
|
|
53
|
|
54 assert len(img_shape) == 2
|
|
55 assert len(tile_shape) == 2
|
|
56 assert len(tile_spacing) == 2
|
|
57
|
|
58 # The expression below can be re-written in a more C style as
|
|
59 # follows :
|
|
60 #
|
|
61 # out_shape = [0,0]
|
|
62 # out_shape[0] = (img_shape[0]+tile_spacing[0])*tile_shape[0] -
|
|
63 # tile_spacing[0]
|
|
64 # out_shape[1] = (img_shape[1]+tile_spacing[1])*tile_shape[1] -
|
|
65 # tile_spacing[1]
|
|
66 out_shape = [(ishp + tsp) * tshp - tsp for ishp, tshp, tsp
|
|
67 in zip(img_shape, tile_shape, tile_spacing)]
|
|
68
|
|
69 if isinstance(X, tuple):
|
|
70 assert len(X) == 4
|
|
71 # Create an output numpy ndarray to store the image
|
|
72 if output_pixel_vals:
|
|
73 out_array = numpy.zeros((out_shape[0], out_shape[1], 4), dtype='uint8')
|
|
74 else:
|
|
75 out_array = numpy.zeros((out_shape[0], out_shape[1], 4), dtype=X.dtype)
|
|
76
|
|
77 #colors default to 0, alpha defaults to 1 (opaque)
|
|
78 if output_pixel_vals:
|
|
79 channel_defaults = [0,0,0,255]
|
|
80 else:
|
|
81 channel_defaults = [0.,0.,0.,1.]
|
|
82
|
|
83 for i in xrange(4):
|
|
84 if X[i] is None:
|
|
85 # if channel is None, fill it with zeros of the correct
|
|
86 # dtype
|
|
87 out_array[:,:,i] = numpy.zeros(out_shape,
|
|
88 dtype='uint8' if output_pixel_vals else out_array.dtype
|
|
89 )+channel_defaults[i]
|
|
90 else:
|
|
91 # use a recurrent call to compute the channel and store it
|
|
92 # in the output
|
|
93 out_array[:,:,i] = tile_raster_images(X[i], img_shape, tile_shape, tile_spacing, scale_rows_to_unit_interval, output_pixel_vals)
|
|
94 return out_array
|
|
95
|
|
96 else:
|
|
97 # if we are dealing with only one channel
|
|
98 H, W = img_shape
|
|
99 Hs, Ws = tile_spacing
|
|
100
|
|
101 # generate a matrix to store the output
|
|
102 out_array = numpy.zeros(out_shape, dtype='uint8' if output_pixel_vals else X.dtype)
|
|
103
|
|
104
|
|
105 for tile_row in xrange(tile_shape[0]):
|
|
106 for tile_col in xrange(tile_shape[1]):
|
|
107 if tile_row * tile_shape[1] + tile_col < X.shape[0]:
|
|
108 if scale_rows_to_unit_interval:
|
|
109 # if we should scale values to be between 0 and 1
|
|
110 # do this by calling the `scale_to_unit_interval`
|
|
111 # function
|
|
112 this_img = scale_to_unit_interval(X[tile_row * tile_shape[1] + tile_col].reshape(img_shape))
|
|
113 else:
|
|
114 this_img = X[tile_row * tile_shape[1] + tile_col].reshape(img_shape)
|
|
115 # add the slice to the corresponding position in the
|
|
116 # output array
|
|
117 out_array[
|
|
118 tile_row * (H+Hs):tile_row*(H+Hs)+H,
|
|
119 tile_col * (W+Ws):tile_col*(W+Ws)+W
|
|
120 ] \
|
|
121 = this_img * (255 if output_pixel_vals else 1)
|
|
122 return out_array
|
|
123
|
|
124
|
|
125
|