Mercurial > ift6266
annotate baseline_algorithms/conv_mlp/convolutional_mlp.py @ 166:17ae5a1a4dd1
Moving the convolutional MLP code into baseline
author | Dumitru Erhan <dumitru.erhan@gmail.com> |
---|---|
date | Fri, 26 Feb 2010 14:03:24 -0500 |
parents | conv_mlp/convolutional_mlp.py@33038ab4e799 |
children |
rev | line source |
---|---|
146
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
1 """ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
2 This tutorial introduces the LeNet5 neural network architecture using Theano. LeNet5 is a |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
3 convolutional neural network, good for classifying images. This tutorial shows how to build the |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
4 architecture, and comes with all the hyper-parameters you need to reproduce the paper's MNIST |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
5 results. |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
6 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
7 The best results are obtained after X iterations of the main program loop, which takes *** |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
8 minutes on my workstation (an Intel Core i7, circa July 2009), and *** minutes on my GPU (an |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
9 NVIDIA GTX 285 graphics processor). |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
10 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
11 This implementation simplifies the model in the following ways: |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
12 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
13 - LeNetConvPool doesn't implement location-specific gain and bias parameters |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
14 - LeNetConvPool doesn't implement pooling by average, it implements pooling by max. |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
15 - Digit classification is implemented with a logistic regression rather than an RBF network |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
16 - LeNet5 was not fully-connected convolutions at second layer |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
17 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
18 References: |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
19 - Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
20 Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998. |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
21 http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
22 """ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
23 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
24 import numpy, theano, cPickle, gzip, time |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
25 import theano.tensor as T |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
26 import theano.sandbox.softsign |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
27 import pylearn.datasets.MNIST |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
28 from pylearn.io import filetensor as ft |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
29 from theano.sandbox import conv, downsample |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
30 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
31 class LeNetConvPoolLayer(object): |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
32 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
33 def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2,2)): |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
34 """ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
35 Allocate a LeNetConvPoolLayer with shared variable internal parameters. |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
36 :type rng: numpy.random.RandomState |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
37 :param rng: a random number generator used to initialize weights |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
38 :type input: theano.tensor.dtensor4 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
39 :param input: symbolic image tensor, of shape image_shape |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
40 :type filter_shape: tuple or list of length 4 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
41 :param filter_shape: (number of filters, num input feature maps, |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
42 filter height,filter width) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
43 :type image_shape: tuple or list of length 4 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
44 :param image_shape: (batch size, num input feature maps, |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
45 image height, image width) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
46 :type poolsize: tuple or list of length 2 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
47 :param poolsize: the downsampling (pooling) factor (#rows,#cols) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
48 """ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
49 assert image_shape[1]==filter_shape[1] |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
50 self.input = input |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
51 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
52 # initialize weight values: the fan-in of each hidden neuron is |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
53 # restricted by the size of the receptive fields. |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
54 fan_in = numpy.prod(filter_shape[1:]) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
55 W_values = numpy.asarray( rng.uniform( \ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
56 low = -numpy.sqrt(3./fan_in), \ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
57 high = numpy.sqrt(3./fan_in), \ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
58 size = filter_shape), dtype = theano.config.floatX) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
59 self.W = theano.shared(value = W_values) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
60 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
61 # the bias is a 1D tensor -- one bias per output feature map |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
62 b_values = numpy.zeros((filter_shape[0],), dtype= theano.config.floatX) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
63 self.b = theano.shared(value= b_values) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
64 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
65 # convolve input feature maps with filters |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
66 conv_out = conv.conv2d(input, self.W, |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
67 filter_shape=filter_shape, image_shape=image_shape) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
68 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
69 # downsample each feature map individually, using maxpooling |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
70 pooled_out = downsample.max_pool2D(conv_out, poolsize, ignore_border=True) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
71 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
72 # add the bias term. Since the bias is a vector (1D array), we first |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
73 # reshape it to a tensor of shape (1,n_filters,1,1). Each bias will thus |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
74 # be broadcasted across mini-batches and feature map width & height |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
75 self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
76 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
77 # store parameters of this layer |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
78 self.params = [self.W, self.b] |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
79 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
80 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
81 class SigmoidalLayer(object): |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
82 def __init__(self, rng, input, n_in, n_out): |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
83 """ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
84 Typical hidden layer of a MLP: units are fully-connected and have |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
85 sigmoidal activation function. Weight matrix W is of shape (n_in,n_out) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
86 and the bias vector b is of shape (n_out,). |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
87 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
88 Hidden unit activation is given by: sigmoid(dot(input,W) + b) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
89 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
90 :type rng: numpy.random.RandomState |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
91 :param rng: a random number generator used to initialize weights |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
92 :type input: theano.tensor.dmatrix |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
93 :param input: a symbolic tensor of shape (n_examples, n_in) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
94 :type n_in: int |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
95 :param n_in: dimensionality of input |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
96 :type n_out: int |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
97 :param n_out: number of hidden units |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
98 """ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
99 self.input = input |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
100 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
101 W_values = numpy.asarray( rng.uniform( \ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
102 low = -numpy.sqrt(6./(n_in+n_out)), \ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
103 high = numpy.sqrt(6./(n_in+n_out)), \ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
104 size = (n_in, n_out)), dtype = theano.config.floatX) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
105 self.W = theano.shared(value = W_values) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
106 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
107 b_values = numpy.zeros((n_out,), dtype= theano.config.floatX) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
108 self.b = theano.shared(value= b_values) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
109 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
110 self.output = T.tanh(T.dot(input, self.W) + self.b) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
111 self.params = [self.W, self.b] |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
112 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
113 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
114 class LogisticRegression(object): |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
115 """Multi-class Logistic Regression Class |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
116 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
117 The logistic regression is fully described by a weight matrix :math:`W` |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
118 and bias vector :math:`b`. Classification is done by projecting data |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
119 points onto a set of hyperplanes, the distance to which is used to |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
120 determine a class membership probability. |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
121 """ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
122 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
123 def __init__(self, input, n_in, n_out): |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
124 """ Initialize the parameters of the logistic regression |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
125 :param input: symbolic variable that describes the input of the |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
126 architecture (one minibatch) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
127 :type n_in: int |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
128 :param n_in: number of input units, the dimension of the space in |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
129 which the datapoints lie |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
130 :type n_out: int |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
131 :param n_out: number of output units, the dimension of the space in |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
132 which the labels lie |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
133 """ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
134 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
135 # initialize with 0 the weights W as a matrix of shape (n_in, n_out) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
136 self.W = theano.shared( value=numpy.zeros((n_in,n_out), |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
137 dtype = theano.config.floatX) ) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
138 # initialize the baises b as a vector of n_out 0s |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
139 self.b = theano.shared( value=numpy.zeros((n_out,), |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
140 dtype = theano.config.floatX) ) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
141 # compute vector of class-membership probabilities in symbolic form |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
142 self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W)+self.b) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
143 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
144 # compute prediction as class whose probability is maximal in |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
145 # symbolic form |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
146 self.y_pred=T.argmax(self.p_y_given_x, axis=1) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
147 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
148 # list of parameters for this layer |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
149 self.params = [self.W, self.b] |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
150 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
151 def negative_log_likelihood(self, y): |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
152 """Return the mean of the negative log-likelihood of the prediction |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
153 of this model under a given target distribution. |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
154 :param y: corresponds to a vector that gives for each example the |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
155 correct label |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
156 Note: we use the mean instead of the sum so that |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
157 the learning rate is less dependent on the batch size |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
158 """ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
159 return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]),y]) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
160 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
161 def errors(self, y): |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
162 """Return a float representing the number of errors in the minibatch |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
163 over the total number of examples of the minibatch ; zero one |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
164 loss over the size of the minibatch |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
165 """ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
166 # check if y has same dimension of y_pred |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
167 if y.ndim != self.y_pred.ndim: |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
168 raise TypeError('y should have the same shape as self.y_pred', |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
169 ('y', target.type, 'y_pred', self.y_pred.type)) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
170 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
171 # check if y is of the correct datatype |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
172 if y.dtype.startswith('int'): |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
173 # the T.neq operator returns a vector of 0s and 1s, where 1 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
174 # represents a mistake in prediction |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
175 return T.mean(T.neq(self.y_pred, y)) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
176 else: |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
177 raise NotImplementedError() |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
178 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
179 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
180 def load_dataset(fname,batch=20): |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
181 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
182 # repertoire qui contient les donnees NIST |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
183 # le repertoire suivant va fonctionner si vous etes connecte sur un ordinateur |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
184 # du reseau DIRO |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
185 datapath = '/data/lisa/data/nist/by_class/' |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
186 # le fichier .ft contient chiffres NIST dans un format efficace. Les chiffres |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
187 # sont stockes dans une matrice de NxD, ou N est le nombre d'images, est D est |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
188 # le nombre de pixels par image (32x32 = 1024). Chaque pixel de l'image est une |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
189 # valeur entre 0 et 255, correspondant a un niveau de gris. Les valeurs sont |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
190 # stockees comme des uint8, donc des bytes. |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
191 f = open(datapath+'digits/digits_train_data.ft') |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
192 # Verifier que vous avez assez de memoire pour loader les donnees au complet |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
193 # dans le memoire. Sinon, utilisez ft.arraylike, une classe construite |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
194 # specialement pour des fichiers qu'on ne souhaite pas loader dans RAM. |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
195 d = ft.read(f) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
196 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
197 # NB: N'oubliez pas de diviser les valeurs des pixels par 255. si jamais vous |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
198 # utilisez les donnees commes entrees dans un reseaux de neurones et que vous |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
199 # voulez des entres entre 0 et 1. |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
200 # digits_train_data.ft contient les images, digits_train_labels.ft contient les |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
201 # etiquettes |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
202 f = open(datapath+'digits/digits_train_labels.ft') |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
203 labels = ft.read(f) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
204 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
205 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
206 # Load the dataset |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
207 #f = gzip.open(fname,'rb') |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
208 #train_set, valid_set, test_set = cPickle.load(f) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
209 #f.close() |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
210 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
211 # make minibatches of size 20 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
212 batch_size = batch # sized of the minibatch |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
213 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
214 # Dealing with the training set |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
215 # get the list of training images (x) and their labels (y) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
216 (train_set_x, train_set_y) = (d[:4000,:],labels[:4000]) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
217 # initialize the list of training minibatches with empty list |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
218 train_batches = [] |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
219 for i in xrange(0, len(train_set_x), batch_size): |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
220 # add to the list of minibatches the minibatch starting at |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
221 # position i, ending at position i+batch_size |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
222 # a minibatch is a pair ; the first element of the pair is a list |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
223 # of datapoints, the second element is the list of corresponding |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
224 # labels |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
225 train_batches = train_batches + \ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
226 [(train_set_x[i:i+batch_size], train_set_y[i:i+batch_size])] |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
227 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
228 #print train_batches[500] |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
229 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
230 # Dealing with the validation set |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
231 (valid_set_x, valid_set_y) = (d[4000:5000,:],labels[4000:5000]) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
232 # initialize the list of validation minibatches |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
233 valid_batches = [] |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
234 for i in xrange(0, len(valid_set_x), batch_size): |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
235 valid_batches = valid_batches + \ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
236 [(valid_set_x[i:i+batch_size], valid_set_y[i:i+batch_size])] |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
237 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
238 # Dealing with the testing set |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
239 (test_set_x, test_set_y) = (d[5000:6000,:],labels[5000:6000]) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
240 # initialize the list of testing minibatches |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
241 test_batches = [] |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
242 for i in xrange(0, len(test_set_x), batch_size): |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
243 test_batches = test_batches + \ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
244 [(test_set_x[i:i+batch_size], test_set_y[i:i+batch_size])] |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
245 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
246 return train_batches, valid_batches, test_batches |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
247 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
248 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
249 def evaluate_lenet5(learning_rate=0.1, n_iter=1, batch_size=20, n_kern0=20,n_kern1=50,filter_shape=5,n_layer=3, dataset='mnist.pkl.gz'): |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
250 rng = numpy.random.RandomState(23455) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
251 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
252 print 'Before load dataset' |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
253 train_batches, valid_batches, test_batches = load_dataset(dataset,batch_size) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
254 print 'After load dataset' |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
255 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
256 ishape = (32,32) # this is the size of NIST images |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
257 n_kern2=80 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
258 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
259 # allocate symbolic variables for the data |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
260 x = T.matrix('x') # rasterized images |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
261 y = T.lvector() # the labels are presented as 1D vector of [long int] labels |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
262 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
263 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
264 ###################### |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
265 # BUILD ACTUAL MODEL # |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
266 ###################### |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
267 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
268 # Reshape matrix of rasterized images of shape (batch_size,28*28) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
269 # to a 4D tensor, compatible with our LeNetConvPoolLayer |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
270 layer0_input = x.reshape((batch_size,1,32,32)) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
271 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
272 # Construct the first convolutional pooling layer: |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
273 # filtering reduces the image size to (32-5+1,32-5+1)=(28,28) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
274 # maxpooling reduces this further to (28/2,28/2) = (14,14) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
275 # 4D output tensor is thus of shape (20,20,14,14) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
276 layer0 = LeNetConvPoolLayer(rng, input=layer0_input, |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
277 image_shape=(batch_size,1,32,32), |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
278 filter_shape=(n_kern0,1,filter_shape,filter_shape), poolsize=(2,2)) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
279 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
280 if(n_layer>2): |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
281 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
282 # Construct the second convolutional pooling layer |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
283 # filtering reduces the image size to (14-5+1,14-5+1)=(10,10) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
284 # maxpooling reduces this further to (10/2,10/2) = (5,5) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
285 # 4D output tensor is thus of shape (20,50,5,5) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
286 fshape=(32-filter_shape+1)/2 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
287 layer1 = LeNetConvPoolLayer(rng, input=layer0.output, |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
288 image_shape=(batch_size,n_kern0,fshape,fshape), |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
289 filter_shape=(n_kern1,n_kern0,filter_shape,filter_shape), poolsize=(2,2)) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
290 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
291 else: |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
292 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
293 fshape=(32-filter_shape+1)/2 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
294 layer1_input = layer0.output.flatten(2) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
295 # construct a fully-connected sigmoidal layer |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
296 layer1 = SigmoidalLayer(rng, input=layer1_input,n_in=n_kern0*fshape*fshape, n_out=500) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
297 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
298 layer2 = LogisticRegression(input=layer1.output, n_in=500, n_out=10) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
299 cost = layer2.negative_log_likelihood(y) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
300 test_model = theano.function([x,y], layer2.errors(y)) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
301 params = layer2.params+ layer1.params + layer0.params |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
302 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
303 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
304 if(n_layer>3): |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
305 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
306 fshape=(32-filter_shape+1)/2 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
307 fshape2=(fshape-filter_shape+1)/2 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
308 fshape3=(fshape2-filter_shape+1)/2 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
309 layer2 = LeNetConvPoolLayer(rng, input=layer1.output, |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
310 image_shape=(batch_size,n_kern1,fshape2,fshape2), |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
311 filter_shape=(n_kern2,n_kern1,filter_shape,filter_shape), poolsize=(2,2)) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
312 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
313 layer3_input = layer2.output.flatten(2) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
314 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
315 layer3 = SigmoidalLayer(rng, input=layer3_input, |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
316 n_in=n_kern2*fshape3*fshape3, n_out=500) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
317 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
318 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
319 layer4 = LogisticRegression(input=layer3.output, n_in=500, n_out=10) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
320 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
321 cost = layer4.negative_log_likelihood(y) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
322 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
323 test_model = theano.function([x,y], layer4.errors(y)) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
324 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
325 params = layer4.params+ layer3.params+ layer2.params+ layer1.params + layer0.params |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
326 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
327 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
328 elif(n_layer>2): |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
329 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
330 fshape=(32-filter_shape+1)/2 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
331 fshape2=(fshape-filter_shape+1)/2 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
332 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
333 # the SigmoidalLayer being fully-connected, it operates on 2D matrices of |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
334 # shape (batch_size,num_pixels) (i.e matrix of rasterized images). |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
335 # This will generate a matrix of shape (20,32*4*4) = (20,512) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
336 layer2_input = layer1.output.flatten(2) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
337 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
338 # construct a fully-connected sigmoidal layer |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
339 layer2 = SigmoidalLayer(rng, input=layer2_input, |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
340 n_in=n_kern1*fshape2*fshape2, n_out=500) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
341 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
342 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
343 # classify the values of the fully-connected sigmoidal layer |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
344 layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
345 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
346 # the cost we minimize during training is the NLL of the model |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
347 cost = layer3.negative_log_likelihood(y) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
348 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
349 # create a function to compute the mistakes that are made by the model |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
350 test_model = theano.function([x,y], layer3.errors(y)) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
351 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
352 # create a list of all model parameters to be fit by gradient descent |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
353 params = layer3.params+ layer2.params+ layer1.params + layer0.params |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
354 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
355 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
356 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
357 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
358 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
359 # create a list of gradients for all model parameters |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
360 grads = T.grad(cost, params) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
361 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
362 # train_model is a function that updates the model parameters by SGD |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
363 # Since this model has many parameters, it would be tedious to manually |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
364 # create an update rule for each model parameter. We thus create the updates |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
365 # dictionary by automatically looping over all (params[i],grads[i]) pairs. |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
366 updates = {} |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
367 for param_i, grad_i in zip(params, grads): |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
368 updates[param_i] = param_i - learning_rate * grad_i |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
369 train_model = theano.function([x, y], cost, updates=updates) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
370 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
371 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
372 ############### |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
373 # TRAIN MODEL # |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
374 ############### |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
375 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
376 n_minibatches = len(train_batches) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
377 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
378 # early-stopping parameters |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
379 patience = 10000 # look as this many examples regardless |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
380 patience_increase = 2 # wait this much longer when a new best is |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
381 # found |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
382 improvement_threshold = 0.995 # a relative improvement of this much is |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
383 # considered significant |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
384 validation_frequency = n_minibatches # go through this many |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
385 # minibatche before checking the network |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
386 # on the validation set; in this case we |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
387 # check every epoch |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
388 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
389 best_params = None |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
390 best_validation_loss = float('inf') |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
391 best_iter = 0 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
392 test_score = 0. |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
393 start_time = time.clock() |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
394 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
395 # have a maximum of `n_iter` iterations through the entire dataset |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
396 for iter in xrange(n_iter * n_minibatches): |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
397 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
398 # get epoch and minibatch index |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
399 epoch = iter / n_minibatches |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
400 minibatch_index = iter % n_minibatches |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
401 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
402 # get the minibatches corresponding to `iter` modulo |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
403 # `len(train_batches)` |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
404 x,y = train_batches[ minibatch_index ] |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
405 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
406 if iter %100 == 0: |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
407 print 'training @ iter = ', iter |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
408 cost_ij = train_model(x,y) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
409 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
410 if (iter+1) % validation_frequency == 0: |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
411 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
412 # compute zero-one loss on validation set |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
413 this_validation_loss = 0. |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
414 for x,y in valid_batches: |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
415 # sum up the errors for each minibatch |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
416 this_validation_loss += test_model(x,y) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
417 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
418 # get the average by dividing with the number of minibatches |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
419 this_validation_loss /= len(valid_batches) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
420 print('epoch %i, minibatch %i/%i, validation error %f %%' % \ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
421 (epoch, minibatch_index+1, n_minibatches, \ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
422 this_validation_loss*100.)) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
423 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
424 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
425 # if we got the best validation score until now |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
426 if this_validation_loss < best_validation_loss: |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
427 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
428 #improve patience if loss improvement is good enough |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
429 if this_validation_loss < best_validation_loss * \ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
430 improvement_threshold : |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
431 patience = max(patience, iter * patience_increase) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
432 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
433 # save best validation score and iteration number |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
434 best_validation_loss = this_validation_loss |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
435 best_iter = iter |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
436 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
437 # test it on the test set |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
438 test_score = 0. |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
439 for x,y in test_batches: |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
440 test_score += test_model(x,y) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
441 test_score /= len(test_batches) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
442 print((' epoch %i, minibatch %i/%i, test error of best ' |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
443 'model %f %%') % |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
444 (epoch, minibatch_index+1, n_minibatches, |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
445 test_score*100.)) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
446 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
447 if patience <= iter : |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
448 break |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
449 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
450 end_time = time.clock() |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
451 print('Optimization complete.') |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
452 print('Best validation score of %f %% obtained at iteration %i,'\ |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
453 'with test performance %f %%' % |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
454 (best_validation_loss * 100., best_iter, test_score*100.)) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
455 print('The code ran for %f minutes' % ((end_time-start_time)/60.)) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
456 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
457 return (best_validation_loss * 100., test_score*100., (end_time-start_time)/60., best_iter) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
458 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
459 if __name__ == '__main__': |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
460 evaluate_lenet5() |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
461 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
462 def experiment(state, channel): |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
463 print 'start experiment' |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
464 (best_validation_loss, test_score, minutes_trained, iter) = evaluate_lenet5(state.learning_rate, state.n_iter, state.batch_size, state.n_kern0, state.n_kern1, state.filter_shape, state.n_layer) |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
465 print 'end experiment' |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
466 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
467 state.best_validation_loss = best_validation_loss |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
468 state.test_score = test_score |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
469 state.minutes_trained = minutes_trained |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
470 state.iter = iter |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
471 |
33038ab4e799
Reseau a convolution
Jeremy Eustache <jeremy.eustache@voila.fr>
parents:
diff
changeset
|
472 return channel.COMPLETE |