371
|
1 #!/usr/bin/python
|
|
2 # coding: utf-8
|
|
3
|
|
4 import ift6266
|
|
5 import pylearn
|
|
6
|
|
7 import numpy
|
|
8 import theano
|
|
9 import time
|
|
10
|
|
11 import pylearn.version
|
|
12 import theano.tensor as T
|
|
13 from theano.tensor.shared_randomstreams import RandomStreams
|
|
14
|
|
15 import copy
|
|
16 import sys
|
|
17 import os
|
|
18 import os.path
|
|
19
|
|
20 from jobman import DD
|
|
21 import jobman, jobman.sql
|
|
22 from pylearn.io import filetensor
|
|
23
|
|
24 from utils import produit_cartesien_jobs
|
|
25 from copy import copy
|
|
26
|
|
27 from sgd_optimization import SdaSgdOptimizer
|
|
28
|
|
29 #from ift6266.utils.scalar_series import *
|
|
30 from ift6266.utils.seriestables import *
|
|
31 import tables
|
|
32
|
|
33 from ift6266 import datasets
|
|
34 from config import *
|
|
35
|
|
36
|
|
37
|
|
38 '''
|
|
39 Function called by jobman upon launching each job
|
|
40 Its path is the one given when inserting jobs: see EXPERIMENT_PATH
|
|
41 '''
|
|
42 def jobman_entrypoint(state, channel):
|
|
43 # record mercurial versions of each package
|
|
44 pylearn.version.record_versions(state,[theano,ift6266,pylearn])
|
|
45 # TODO: remove this, bad for number of simultaneous requests on DB
|
|
46 channel.save()
|
|
47
|
|
48 # For test runs, we don't want to use the whole dataset so
|
|
49 # reduce it to fewer elements if asked to.
|
|
50 rtt = None
|
|
51 if state.has_key('reduce_train_to'):
|
|
52 rtt = state['reduce_train_to']
|
|
53 elif REDUCE_TRAIN_TO:
|
|
54 rtt = REDUCE_TRAIN_TO
|
|
55
|
|
56 if state.has_key('decrease_lr'):
|
|
57 decrease_lr = state['decrease_lr']
|
|
58 else :
|
|
59 decrease_lr = 0
|
|
60
|
|
61 n_ins = 32*32
|
|
62 n_outs = 36 # 10 digits, 26 characters (merged lower and capitals)
|
|
63
|
|
64 examples_per_epoch = NIST_ALL_TRAIN_SIZE
|
|
65
|
|
66 #To be sure variables will not be only in the if statement
|
|
67 PATH = ''
|
|
68 nom_reptrain = ''
|
|
69 nom_serie = ""
|
|
70 if state['pretrain_choice'] == 0:
|
|
71 nom_serie="series_NIST.h5"
|
|
72 elif state['pretrain_choice'] == 1:
|
|
73 nom_serie="series_P07.h5"
|
|
74
|
|
75 series = create_series(state.num_hidden_layers,nom_serie)
|
|
76
|
|
77
|
|
78 print "Creating optimizer with state, ", state
|
|
79
|
|
80 optimizer = SdaSgdOptimizer(dataset=datasets.nist_all(),
|
|
81 hyperparameters=state, \
|
|
82 n_ins=n_ins, n_outs=n_outs,\
|
|
83 examples_per_epoch=examples_per_epoch, \
|
|
84 series=series,
|
|
85 max_minibatches=rtt)
|
|
86
|
|
87 parameters=[]
|
|
88 #Number of files of P07 used for pretraining
|
|
89 nb_file=0
|
|
90 if state['pretrain_choice'] == 0:
|
|
91 print('\n\tpretraining with NIST\n')
|
|
92 optimizer.pretrain(datasets.nist_all())
|
|
93 elif state['pretrain_choice'] == 1:
|
|
94 #To know how many file will be used during pretraining
|
|
95 nb_file = int(state['pretraining_epochs_per_layer'])
|
|
96 state['pretraining_epochs_per_layer'] = 1 #Only 1 time over the dataset
|
|
97 if nb_file >=100:
|
|
98 sys.exit("The code does not support this much pretraining epoch (99 max with P07).\n"+
|
|
99 "You have to correct the code (and be patient, P07 is huge !!)\n"+
|
|
100 "or reduce the number of pretraining epoch to run the code (better idea).\n")
|
|
101 print('\n\tpretraining with P07')
|
|
102 optimizer.pretrain(datasets.nist_P07(min_file=0,max_file=nb_file))
|
|
103 channel.save()
|
|
104
|
|
105 #Set some of the parameters used for the finetuning
|
|
106 if state.has_key('finetune_set'):
|
|
107 finetune_choice=state['finetune_set']
|
|
108 else:
|
|
109 finetune_choice=FINETUNE_SET
|
|
110
|
|
111 if state.has_key('max_finetuning_epochs'):
|
|
112 max_finetune_epoch_NIST=state['max_finetuning_epochs']
|
|
113 else:
|
|
114 max_finetune_epoch_NIST=MAX_FINETUNING_EPOCHS
|
|
115
|
|
116 if state.has_key('max_finetuning_epochs_P07'):
|
|
117 max_finetune_epoch_P07=state['max_finetuning_epochs_P07']
|
|
118 else:
|
|
119 max_finetune_epoch_P07=max_finetune_epoch_NIST
|
|
120
|
|
121 #Decide how the finetune is done
|
|
122
|
|
123 if finetune_choice == 0:
|
|
124 print('\n\n\tfinetune with NIST\n\n')
|
|
125 optimizer.reload_parameters('params_pretrain.txt')
|
|
126 optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1,decrease=decrease_lr)
|
|
127 channel.save()
|
|
128 if finetune_choice == 1:
|
|
129 print('\n\n\tfinetune with P07\n\n')
|
|
130 optimizer.reload_parameters('params_pretrain.txt')
|
|
131 optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0,decrease=decrease_lr)
|
|
132 channel.save()
|
|
133 if finetune_choice == 2:
|
|
134 print('\n\n\tfinetune with P07\n\n')
|
|
135 optimizer.reload_parameters('params_pretrain.txt')
|
|
136 optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=20,decrease=decrease_lr)
|
|
137 #optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=21,decrease=decrease_lr)
|
|
138 channel.save()
|
|
139 if finetune_choice == 3:
|
|
140 print('\n\n\tfinetune with NIST only on the logistic regression on top (but validation on P07).\n\
|
|
141 All hidden units output are input of the logistic regression\n\n')
|
|
142 optimizer.reload_parameters('params_pretrain.txt')
|
|
143 optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1,special=1,decrease=decrease_lr)
|
|
144
|
|
145
|
|
146 if finetune_choice==-1:
|
|
147 print('\nSERIE OF 4 DIFFERENT FINETUNINGS')
|
|
148 print('\n\n\tfinetune with NIST\n\n')
|
|
149 sys.stdout.flush()
|
|
150 optimizer.reload_parameters('params_pretrain.txt')
|
|
151 optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1,decrease=decrease_lr)
|
|
152 channel.save()
|
|
153 print('\n\n\tfinetune with P07\n\n')
|
|
154 sys.stdout.flush()
|
|
155 optimizer.reload_parameters('params_pretrain.txt')
|
|
156 optimizer.finetune(datasets.nist_P07(),datasets.nist_all(),max_finetune_epoch_P07,ind_test=0,decrease=decrease_lr)
|
|
157 channel.save()
|
|
158 print('\n\n\tfinetune with P07 (done earlier) followed by NIST (written here)\n\n')
|
|
159 sys.stdout.flush()
|
|
160 optimizer.reload_parameters('params_finetune_P07.txt')
|
|
161 optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=21,decrease=decrease_lr)
|
|
162 channel.save()
|
|
163 print('\n\n\tfinetune with NIST only on the logistic regression on top.\n\
|
|
164 All hidden units output are input of the logistic regression\n\n')
|
|
165 sys.stdout.flush()
|
|
166 optimizer.reload_parameters('params_pretrain.txt')
|
|
167 optimizer.finetune(datasets.nist_all(),datasets.nist_P07(),max_finetune_epoch_NIST,ind_test=1,special=1,decrease=decrease_lr)
|
|
168 channel.save()
|
|
169
|
|
170 channel.save()
|
|
171
|
|
172 return channel.COMPLETE
|
|
173
|
|
174 # These Series objects are used to save various statistics
|
|
175 # during the training.
|
|
176 def create_series(num_hidden_layers, nom_serie):
|
|
177
|
|
178 # Replace series we don't want to save with DummySeries, e.g.
|
|
179 # series['training_error'] = DummySeries()
|
|
180
|
|
181 series = {}
|
|
182
|
|
183 basedir = os.getcwd()
|
|
184
|
|
185 h5f = tables.openFile(os.path.join(basedir, nom_serie), "w")
|
|
186
|
|
187 # reconstruction
|
|
188 reconstruction_base = \
|
|
189 ErrorSeries(error_name="reconstruction_error",
|
|
190 table_name="reconstruction_error",
|
|
191 hdf5_file=h5f,
|
|
192 index_names=('epoch','minibatch'),
|
|
193 title="Reconstruction error (mean over "+str(REDUCE_EVERY)+" minibatches)")
|
|
194 series['reconstruction_error'] = \
|
|
195 AccumulatorSeriesWrapper(base_series=reconstruction_base,
|
|
196 reduce_every=REDUCE_EVERY)
|
|
197
|
|
198 # train
|
|
199 training_base = \
|
|
200 ErrorSeries(error_name="training_error",
|
|
201 table_name="training_error",
|
|
202 hdf5_file=h5f,
|
|
203 index_names=('epoch','minibatch'),
|
|
204 title="Training error (mean over "+str(REDUCE_EVERY)+" minibatches)")
|
|
205 series['training_error'] = \
|
|
206 AccumulatorSeriesWrapper(base_series=training_base,
|
|
207 reduce_every=REDUCE_EVERY)
|
|
208
|
|
209 # valid and test are not accumulated/mean, saved directly
|
|
210 series['validation_error'] = \
|
|
211 ErrorSeries(error_name="validation_error",
|
|
212 table_name="validation_error",
|
|
213 hdf5_file=h5f,
|
|
214 index_names=('epoch','minibatch'))
|
|
215
|
|
216 series['test_error'] = \
|
|
217 ErrorSeries(error_name="test_error",
|
|
218 table_name="test_error",
|
|
219 hdf5_file=h5f,
|
|
220 index_names=('epoch','minibatch'))
|
|
221
|
|
222 param_names = []
|
|
223 for i in range(num_hidden_layers):
|
|
224 param_names += ['layer%d_W'%i, 'layer%d_b'%i, 'layer%d_bprime'%i]
|
|
225 param_names += ['logreg_layer_W', 'logreg_layer_b']
|
|
226
|
|
227 # comment out series we don't want to save
|
|
228 series['params'] = SharedParamsStatisticsWrapper(
|
|
229 new_group_name="params",
|
|
230 base_group="/",
|
|
231 arrays_names=param_names,
|
|
232 hdf5_file=h5f,
|
|
233 index_names=('epoch',))
|
|
234
|
|
235 return series
|
|
236
|
|
237 # Perform insertion into the Postgre DB based on combination
|
|
238 # of hyperparameter values above
|
|
239 # (see comment for produit_cartesien_jobs() to know how it works)
|
|
240 def jobman_insert_nist():
|
|
241 jobs = produit_cartesien_jobs(JOB_VALS)
|
|
242
|
|
243 db = jobman.sql.db(JOBDB)
|
|
244 for job in jobs:
|
|
245 job.update({jobman.sql.EXPERIMENT: EXPERIMENT_PATH})
|
|
246 jobman.sql.insert_dict(job, db)
|
|
247
|
|
248 print "inserted"
|
|
249
|
|
250 if __name__ == '__main__':
|
|
251
|
|
252 args = sys.argv[1:]
|
|
253
|
|
254 #if len(args) > 0 and args[0] == 'load_nist':
|
|
255 # test_load_nist()
|
|
256
|
|
257 if len(args) > 0 and args[0] == 'jobman_insert':
|
|
258 jobman_insert_nist()
|
|
259
|
|
260 elif len(args) > 0 and args[0] == 'test_jobman_entrypoint':
|
|
261 chanmock = DD({'COMPLETE':0,'save':(lambda:None)})
|
|
262 jobman_entrypoint(DD(DEFAULT_HP_NIST), chanmock)
|
|
263
|
|
264 else:
|
|
265 print "Bad arguments"
|
|
266
|