annotate deep/stacked_dae/old/utils.py @ 618:14ba0120baff

review response changes
author Yoshua Bengio <bengioy@iro.umontreal.ca>
date Sun, 09 Jan 2011 14:13:23 -0500
parents c8fe09a65039
children
rev   line source
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
1 #!/usr/bin/python
191
3632e6258642 Ajouts mineurs à stacked_dae, juste printé l'heure je crois.
fsavard
parents: 167
diff changeset
2 # coding: utf-8
3632e6258642 Ajouts mineurs à stacked_dae, juste printé l'heure je crois.
fsavard
parents: 167
diff changeset
3
3632e6258642 Ajouts mineurs à stacked_dae, juste printé l'heure je crois.
fsavard
parents: 167
diff changeset
4 from __future__ import with_statement
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
5
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
6 from jobman import DD
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
7
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
8 # from pylearn codebase
192
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
9 # useful in __init__(param1, param2, etc.) to save
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
10 # values in self.param1, self.param2... just call
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
11 # update_locals(self, locals())
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
12 def update_locals(obj, dct):
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
13 if 'self' in dct:
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
14 del dct['self']
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
15 obj.__dict__.update(dct)
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
16
192
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
17 # from a dictionary of possible values for hyperparameters, e.g.
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
18 # hp_values = {'learning_rate':[0.1, 0.01], 'num_layers': [1,2]}
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
19 # create a list of other dictionaries representing all the possible
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
20 # combinations, thus in this example creating:
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
21 # [{'learning_rate': 0.1, 'num_layers': 1}, ...]
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
22 # (similarly for combinations (0.1, 2), (0.01, 1), (0.01, 2))
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
23 def produit_cartesien_jobs(val_dict):
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
24 job_list = [DD()]
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
25 all_keys = val_dict.keys()
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
26
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
27 for key in all_keys:
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
28 possible_values = val_dict[key]
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
29 new_job_list = []
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
30 for val in possible_values:
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
31 for job in job_list:
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
32 to_insert = job.copy()
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
33 to_insert.update({key: val})
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
34 new_job_list.append(to_insert)
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
35 job_list = new_job_list
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
36
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
37 return job_list
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
38
192
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
39 def test_produit_cartesien_jobs():
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
40 vals = {'a': [1,2], 'b': [3,4,5]}
192
e656edaedb48 Commented a few things, renamed the produit_croise_jobs function, replaced the cost function (NOT TESTED YET).
fsavard
parents: 191
diff changeset
41 print produit_cartesien_jobs(vals)
131
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
42
5c79a2557f2f Un peu de ménage dans code pour stacked DAE, splitté en fichiers dans un nouveau sous-répertoire.
savardf
parents:
diff changeset
43
139
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
44 # taken from http://stackoverflow.com/questions/276052/how-to-get-current-cpu-and-ram-usage-in-python
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
45 """Simple module for getting amount of memory used by a specified user's
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
46 processes on a UNIX system.
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
47 It uses UNIX ps utility to get the memory usage for a specified username and
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
48 pipe it to awk for summing up per application memory usage and return the total.
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
49 Python's Popen() from subprocess module is used for spawning ps and awk.
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
50
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
51 """
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
52
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
53 import subprocess
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
54
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
55 class MemoryMonitor(object):
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
56
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
57 def __init__(self, username):
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
58 """Create new MemoryMonitor instance."""
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
59 self.username = username
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
60
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
61 def usage(self):
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
62 """Return int containing memory used by user's processes."""
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
63 self.process = subprocess.Popen("ps -u %s -o rss | awk '{sum+=$1} END {print sum}'" % self.username,
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
64 shell=True,
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
65 stdout=subprocess.PIPE,
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
66 )
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
67 self.stdout_list = self.process.communicate()[0].split('\n')
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
68 return int(self.stdout_list[0])
7d8366fb90bf Ajouté des __init__.py dans l'arborescence pour que les scripts puissent être utilisés avec des paths pour jobman, et fait pas mal de modifs dans stacked_dae pour pouvoir réutiliser le travail fait pour des tests où le pretraining est le même.
fsavard
parents: 131
diff changeset
69