annotate deep/convolutional_dae/stacked_convolutional_dae.py @ 618:14ba0120baff

review response changes
author Yoshua Bengio <bengioy@iro.umontreal.ca>
date Sun, 09 Jan 2011 14:13:23 -0500
parents 0c0f0b3f6a93
children
rev   line source
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
1 import numpy
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
2 import theano
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
3 import time
247
4d109b648c31 Fixed dataset import. Removed unuseful code from da_conv. Keys parameters are now passed as arguments.
humel
parents: 215
diff changeset
4 import sys
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
5 import theano.tensor as T
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
6 from theano.tensor.shared_randomstreams import RandomStreams
259
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
7 #import theano.sandbox.softsign
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
8
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
9 from theano.tensor.signal import downsample
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
10 from theano.tensor.nnet import conv
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
11
247
4d109b648c31 Fixed dataset import. Removed unuseful code from da_conv. Keys parameters are now passed as arguments.
humel
parents: 215
diff changeset
12 from ift6266 import datasets
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
13 from ift6266.baseline.log_reg.log_reg import LogisticRegression
247
4d109b648c31 Fixed dataset import. Removed unuseful code from da_conv. Keys parameters are now passed as arguments.
humel
parents: 215
diff changeset
14
248
7e6fecabb656 Optimized the call of ConvOp by specifying additional parameters. Specified image shape of the da_conv layer.
humel
parents: 247
diff changeset
15 batch_size = 100
7e6fecabb656 Optimized the call of ConvOp by specifying additional parameters. Specified image shape of the da_conv layer.
humel
parents: 247
diff changeset
16
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
17 class SigmoidalLayer(object):
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
18 def __init__(self, rng, input, n_in, n_out):
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
19
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
20 self.input = input
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
21
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
22 W_values = numpy.asarray( rng.uniform( \
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
23 low = -numpy.sqrt(6./(n_in+n_out)), \
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
24 high = numpy.sqrt(6./(n_in+n_out)), \
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
25 size = (n_in, n_out)), dtype = theano.config.floatX)
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
26 self.W = theano.shared(value = W_values)
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
27
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
28 b_values = numpy.zeros((n_out,), dtype= theano.config.floatX)
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
29 self.b = theano.shared(value= b_values)
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
30
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
31 self.output = T.tanh(T.dot(input, self.W) + self.b)
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
32 self.params = [self.W, self.b]
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
33
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
34 class dA_conv(object):
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
35
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
36 def __init__(self, input, filter_shape, corruption_level = 0.1,
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
37 shared_W = None, shared_b = None, image_shape = None,
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
38 poolsize = (2,2)):
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
39
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
40 theano_rng = RandomStreams()
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
41
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
42 fan_in = numpy.prod(filter_shape[1:])
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
43 fan_out = filter_shape[0] * numpy.prod(filter_shape[2:])
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
44
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
45 center = theano.shared(value = 1, name="center")
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
46 scale = theano.shared(value = 2, name="scale")
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
47
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
48 if shared_W != None and shared_b != None :
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
49 self.W = shared_W
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
50 self.b = shared_b
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
51 else:
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
52 initial_W = numpy.asarray( numpy.random.uniform(
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
53 low = -numpy.sqrt(6./(fan_in+fan_out)),
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
54 high = numpy.sqrt(6./(fan_in+fan_out)),
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
55 size = filter_shape), dtype = theano.config.floatX)
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
56 initial_b = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
57 self.W = theano.shared(value = initial_W, name = "W")
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
58 self.b = theano.shared(value = initial_b, name = "b")
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
59
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
60
215
334d2444000d Changes that enable using this code when floatX=float32
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 200
diff changeset
61 initial_b_prime= numpy.zeros((filter_shape[1],),dtype=theano.config.floatX)
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
62
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
63 self.b_prime = theano.shared(value = initial_b_prime, name = "b_prime")
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
64
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
65 self.x = input
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
66
215
334d2444000d Changes that enable using this code when floatX=float32
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 200
diff changeset
67 self.tilde_x = theano_rng.binomial( self.x.shape, 1, 1 - corruption_level,dtype=theano.config.floatX) * self.x
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
68
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
69 conv1_out = conv.conv2d(self.tilde_x, self.W, filter_shape=filter_shape,
259
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
70 image_shape=image_shape, border_mode='valid')
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
71
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
72 self.y = T.tanh(conv1_out + self.b.dimshuffle('x', 0, 'x', 'x'))
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
73
259
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
74 da_filter_shape = [ filter_shape[1], filter_shape[0],
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
75 filter_shape[2], filter_shape[3] ]
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
76 initial_W_prime = numpy.asarray( numpy.random.uniform( \
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
77 low = -numpy.sqrt(6./(fan_in+fan_out)), \
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
78 high = numpy.sqrt(6./(fan_in+fan_out)), \
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
79 size = da_filter_shape), dtype = theano.config.floatX)
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
80 self.W_prime = theano.shared(value = initial_W_prime, name = "W_prime")
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
81
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
82 conv2_out = conv.conv2d(self.y, self.W_prime,
259
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
83 filter_shape = da_filter_shape,
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
84 border_mode='full')
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
85
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
86 self.z = (T.tanh(conv2_out + self.b_prime.dimshuffle('x', 0, 'x', 'x'))+center) / scale
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
87
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
88 scaled_x = (self.x + center) / scale
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
89
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
90 self.L = - T.sum( scaled_x*T.log(self.z) + (1-scaled_x)*T.log(1-self.z), axis=1 )
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
91
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
92 self.cost = T.mean(self.L)
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
93
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
94 self.params = [ self.W, self.b, self.b_prime ]
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
95
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
96 class LeNetConvPoolLayer(object):
247
4d109b648c31 Fixed dataset import. Removed unuseful code from da_conv. Keys parameters are now passed as arguments.
humel
parents: 215
diff changeset
97
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
98 def __init__(self, rng, input, filter_shape, image_shape=None, poolsize=(2,2)):
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
99 self.input = input
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
100
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
101 W_values = numpy.zeros(filter_shape, dtype=theano.config.floatX)
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
102 self.W = theano.shared(value=W_values)
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
103
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
104 b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
105 self.b = theano.shared(value=b_values)
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
106
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
107 conv_out = conv.conv2d(input, self.W,
259
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
108 filter_shape=filter_shape, image_shape=image_shape)
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
109
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
110
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
111 fan_in = numpy.prod(filter_shape[1:])
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
112 fan_out = filter_shape[0] * numpy.prod(filter_shape[2:]) / numpy.prod(poolsize)
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
113
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
114 W_bound = numpy.sqrt(6./(fan_in + fan_out))
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
115 self.W.value = numpy.asarray(
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
116 rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
117 dtype = theano.config.floatX)
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
118
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
119
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
120 pooled_out = downsample.max_pool2D(conv_out, poolsize, ignore_border=True)
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
121
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
122 self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
123 self.params = [self.W, self.b]
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
124
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
125
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
126 class SdA():
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
127 def __init__(self, input, n_ins_mlp, conv_hidden_layers_sizes,
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
128 mlp_hidden_layers_sizes, corruption_levels, rng, n_out,
259
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
129 pretrain_lr, finetune_lr, img_shape):
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
130
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
131 self.layers = []
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
132 self.pretrain_functions = []
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
133 self.params = []
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
134 self.conv_n_layers = len(conv_hidden_layers_sizes)
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
135 self.mlp_n_layers = len(mlp_hidden_layers_sizes)
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
136
215
334d2444000d Changes that enable using this code when floatX=float32
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 200
diff changeset
137 self.x = T.matrix('x') # the data is presented as rasterized images
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
138 self.y = T.ivector('y') # the labels are presented as 1D vector of
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
139
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
140 for i in xrange( self.conv_n_layers ):
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
141 filter_shape=conv_hidden_layers_sizes[i][0]
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
142 image_shape=conv_hidden_layers_sizes[i][1]
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
143 max_poolsize=conv_hidden_layers_sizes[i][2]
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
144
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
145 if i == 0 :
259
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
146 layer_input=self.x.reshape((self.x.shape[0], 1) + img_shape)
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
147 else:
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
148 layer_input=self.layers[-1].output
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
149
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
150 layer = LeNetConvPoolLayer(rng, input=layer_input,
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
151 image_shape=image_shape,
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
152 filter_shape=filter_shape,
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
153 poolsize=max_poolsize)
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
154 print 'Convolutional layer', str(i+1), 'created'
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
155
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
156 self.layers += [layer]
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
157 self.params += layer.params
215
334d2444000d Changes that enable using this code when floatX=float32
Dumitru Erhan <dumitru.erhan@gmail.com>
parents: 200
diff changeset
158
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
159 da_layer = dA_conv(corruption_level = corruption_levels[0],
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
160 input = layer_input,
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
161 shared_W = layer.W, shared_b = layer.b,
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
162 filter_shape = filter_shape,
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
163 image_shape = image_shape )
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
164
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
165 gparams = T.grad(da_layer.cost, da_layer.params)
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
166
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
167 updates = {}
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
168 for param, gparam in zip(da_layer.params, gparams):
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
169 updates[param] = param - gparam * pretrain_lr
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
170
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
171 update_fn = theano.function([self.x], da_layer.cost, updates = updates)
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
172
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
173 self.pretrain_functions += [update_fn]
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
174
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
175 for i in xrange( self.mlp_n_layers ):
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
176 if i == 0 :
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
177 input_size = n_ins_mlp
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
178 else:
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
179 input_size = mlp_hidden_layers_sizes[i-1]
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
180
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
181 if i == 0 :
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
182 if len( self.layers ) == 0 :
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
183 layer_input=self.x
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
184 else :
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
185 layer_input = self.layers[-1].output.flatten(2)
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
186 else:
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
187 layer_input = self.layers[-1].output
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
188
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
189 layer = SigmoidalLayer(rng, layer_input, input_size,
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
190 mlp_hidden_layers_sizes[i] )
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
191
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
192 self.layers += [layer]
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
193 self.params += layer.params
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
194
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
195 print 'MLP layer', str(i+1), 'created'
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
196
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
197 self.logLayer = LogisticRegression(input=self.layers[-1].output, \
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
198 n_in=mlp_hidden_layers_sizes[-1], n_out=n_out)
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
199 self.params += self.logLayer.params
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
200
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
201 cost = self.logLayer.negative_log_likelihood(self.y)
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
202
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
203 gparams = T.grad(cost, self.params)
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
204
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
205 updates = {}
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
206 for param,gparam in zip(self.params, gparams):
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
207 updates[param] = param - gparam*finetune_lr
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
208
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
209 self.finetune = theano.function([self.x, self.y], cost, updates = updates)
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
210
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
211 self.errors = self.logLayer.errors(self.y)
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
212
259
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
213 def sgd_optimization_mnist(learning_rate=0.1, pretraining_epochs = 1,
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
214 pretrain_lr = 0.1, training_epochs = 1000,
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
215 kernels = [[4,5,5], [4,3,3]], mlp_layers=[500],
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
216 corruption_levels = [0.2, 0.2, 0.2],
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
217 batch_size = batch_size, img_shape=(28, 28),
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
218 max_pool_layers = [[2,2], [2,2]],
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
219 dataset=datasets.mnist(5000)):
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
220
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
221 # allocate symbolic variables for the data
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
222 index = T.lscalar() # index to a [mini]batch
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
223 x = T.matrix('x') # the data is presented as rasterized images
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
224 y = T.ivector('y') # the labels are presented as 1d vector of
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
225 # [int] labels
247
4d109b648c31 Fixed dataset import. Removed unuseful code from da_conv. Keys parameters are now passed as arguments.
humel
parents: 215
diff changeset
226
259
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
227 layer0_input = x.reshape((x.shape[0],1)+img_shape)
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
228
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
229 rng = numpy.random.RandomState(1234)
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
230 conv_layers=[]
259
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
231 init_layer = [[kernels[0][0],1,kernels[0][1],kernels[0][2]],
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
232 None, # do not specify the batch size since it can
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
233 # change for the last one and then theano will
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
234 # crash.
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
235 max_pool_layers[0]]
247
4d109b648c31 Fixed dataset import. Removed unuseful code from da_conv. Keys parameters are now passed as arguments.
humel
parents: 215
diff changeset
236 conv_layers.append(init_layer)
248
7e6fecabb656 Optimized the call of ConvOp by specifying additional parameters. Specified image shape of the da_conv layer.
humel
parents: 247
diff changeset
237
259
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
238 conv_n_out = (img_shape[0]-kernels[0][2]+1)/max_pool_layers[0][0]
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
239
247
4d109b648c31 Fixed dataset import. Removed unuseful code from da_conv. Keys parameters are now passed as arguments.
humel
parents: 215
diff changeset
240 for i in range(1,len(kernels)):
259
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
241 layer = [[kernels[i][0],kernels[i-1][0],kernels[i][1],kernels[i][2]],
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
242 None, # same comment as for init_layer
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
243 max_pool_layers[i] ]
247
4d109b648c31 Fixed dataset import. Removed unuseful code from da_conv. Keys parameters are now passed as arguments.
humel
parents: 215
diff changeset
244 conv_layers.append(layer)
4d109b648c31 Fixed dataset import. Removed unuseful code from da_conv. Keys parameters are now passed as arguments.
humel
parents: 215
diff changeset
245 conv_n_out = (conv_n_out - kernels[i][2]+1)/max_pool_layers[i][0]
259
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
246
247
4d109b648c31 Fixed dataset import. Removed unuseful code from da_conv. Keys parameters are now passed as arguments.
humel
parents: 215
diff changeset
247 network = SdA(input = layer0_input, n_ins_mlp = kernels[-1][0]*conv_n_out**2,
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
248 conv_hidden_layers_sizes = conv_layers,
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
249 mlp_hidden_layers_sizes = mlp_layers,
259
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
250 corruption_levels = corruption_levels, n_out = 62,
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
251 rng = rng , pretrain_lr = pretrain_lr,
3919c71e3091 Make img_size a parameter, and remove the passing of the image size to the ConvOp. This will have to get back in later somehow.
Arnaud Bergeron <abergeron@gmail.com>
parents: 248
diff changeset
252 finetune_lr = learning_rate, img_shape=img_shape)
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
253
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
254 test_model = theano.function([network.x, network.y], network.errors)
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
255
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
256 start_time = time.clock()
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
257 for i in xrange(len(network.layers)-len(mlp_layers)):
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
258 for epoch in xrange(pretraining_epochs):
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
259 for x, y in dataset.train(batch_size):
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
260 c = network.pretrain_functions[i](x)
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
261 print 'pre-training convolution layer %i, epoch %d, cost '%(i,epoch), c
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
262
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
263 patience = 10000 # look as this many examples regardless
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
264 patience_increase = 2. # WAIT THIS MUCH LONGER WHEN A NEW BEST IS
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
265 # FOUND
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
266 improvement_threshold = 0.995 # a relative improvement of this much is
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
267
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
268 validation_frequency = patience/2
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
269
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
270 best_params = None
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
271 best_validation_loss = float('inf')
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
272 test_score = 0.
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
273 start_time = time.clock()
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
274
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
275 done_looping = False
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
276 epoch = 0
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
277 iter = 0
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
278
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
279 while (epoch < training_epochs) and (not done_looping):
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
280 epoch = epoch + 1
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
281 for x, y in dataset.train(batch_size):
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
282
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
283 cost_ij = network.finetune(x, y)
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
284 iter += 1
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
285
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
286 if iter % validation_frequency == 0:
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
287 validation_losses = [test_model(xv, yv) for xv, yv in dataset.valid(batch_size)]
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
288 this_validation_loss = numpy.mean(validation_losses)
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
289 print('epoch %i, iter %i, validation error %f %%' % \
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
290 (epoch, iter, this_validation_loss*100.))
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
291
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
292 # if we got the best validation score until now
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
293 if this_validation_loss < best_validation_loss:
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
294
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
295 #improve patience if loss improvement is good enough
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
296 if this_validation_loss < best_validation_loss * \
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
297 improvement_threshold :
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
298 patience = max(patience, iter * patience_increase)
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
299
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
300 # save best validation score and iteration number
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
301 best_validation_loss = this_validation_loss
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
302 best_iter = iter
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
303
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
304 # test it on the test set
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
305 test_losses = [test_model(xt, yt) for xt, yt in dataset.test(batch_size)]
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
306 test_score = numpy.mean(test_losses)
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
307 print((' epoch %i, iter %i, test error of best '
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
308 'model %f %%') %
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
309 (epoch, iter, test_score*100.))
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
310
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
311 if patience <= iter :
200
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
312 done_looping = True
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
313 break
3f2cc90ad51c Adapt the sdae code for ift6266.datasets input.
Arnaud Bergeron <abergeron@gmail.com>
parents: 167
diff changeset
314
138
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
315 end_time = time.clock()
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
316 print(('Optimization complete with best validation score of %f %%,'
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
317 'with test performance %f %%') %
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
318 (best_validation_loss * 100., test_score*100.))
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
319 print ('The code ran for %f minutes' % ((end_time-start_time)/60.))
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
320
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
321 if __name__ == '__main__':
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
322 sgd_optimization_mnist()
128507ac4edf Initial commit for the stacked convolutional denoising autoencoders
Owner <salahmeister@gmail.com>
parents:
diff changeset
323