87
|
1 """ Captcha.Visual.Distortions
|
|
2
|
|
3 Distortion layers for visual CAPTCHAs
|
|
4 """
|
|
5 #
|
|
6 # PyCAPTCHA Package
|
|
7 # Copyright (C) 2004 Micah Dowty <micah@navi.cx>
|
|
8 #
|
|
9
|
|
10 from Captcha.Visual import Layer
|
|
11 import ImageDraw, Image
|
|
12 import random, math
|
|
13
|
|
14
|
|
15 class WigglyBlocks(Layer):
|
|
16 """Randomly select and shift blocks of the image"""
|
|
17 def __init__(self, blockSize=3, sigma=0.01, iterations=300):
|
|
18 self.blockSize = blockSize
|
|
19 self.sigma = sigma
|
|
20 self.iterations = iterations
|
|
21 self.seed = random.random()
|
|
22
|
|
23 def render(self, image):
|
|
24 r = random.Random(self.seed)
|
|
25 for i in xrange(self.iterations):
|
|
26 # Select a block
|
|
27 bx = int(r.uniform(0, image.size[0]-self.blockSize))
|
|
28 by = int(r.uniform(0, image.size[1]-self.blockSize))
|
|
29 block = image.crop((bx, by, bx+self.blockSize-1, by+self.blockSize-1))
|
|
30
|
|
31 # Figure out how much to move it.
|
|
32 # The call to floor() is important so we always round toward
|
|
33 # 0 rather than to -inf. Just int() would bias the block motion.
|
|
34 mx = int(math.floor(r.normalvariate(0, self.sigma)))
|
|
35 my = int(math.floor(r.normalvariate(0, self.sigma)))
|
|
36
|
|
37 # Now actually move the block
|
|
38 image.paste(block, (bx+mx, by+my))
|
|
39
|
|
40
|
|
41 class WarpBase(Layer):
|
|
42 """Abstract base class for image warping. Subclasses define a
|
|
43 function that maps points in the output image to points in the input image.
|
|
44 This warping engine runs a grid of points through this transform and uses
|
|
45 PIL's mesh transform to warp the image.
|
|
46 """
|
|
47 filtering = Image.BILINEAR
|
|
48 resolution = 10
|
|
49
|
|
50 def getTransform(self, image):
|
|
51 """Return a transformation function, subclasses should override this"""
|
|
52 return lambda x, y: (x, y)
|
|
53
|
|
54 def render(self, image):
|
|
55 r = self.resolution
|
|
56 xPoints = image.size[0] / r + 2
|
|
57 yPoints = image.size[1] / r + 2
|
|
58 f = self.getTransform(image)
|
|
59
|
|
60 # Create a list of arrays with transformed points
|
|
61 xRows = []
|
|
62 yRows = []
|
|
63 for j in xrange(yPoints):
|
|
64 xRow = []
|
|
65 yRow = []
|
|
66 for i in xrange(xPoints):
|
|
67 x, y = f(i*r, j*r)
|
|
68
|
|
69 # Clamp the edges so we don't get black undefined areas
|
|
70 x = max(0, min(image.size[0]-1, x))
|
|
71 y = max(0, min(image.size[1]-1, y))
|
|
72
|
|
73 xRow.append(x)
|
|
74 yRow.append(y)
|
|
75 xRows.append(xRow)
|
|
76 yRows.append(yRow)
|
|
77
|
|
78 # Create the mesh list, with a transformation for
|
|
79 # each square between points on the grid
|
|
80 mesh = []
|
|
81 for j in xrange(yPoints-1):
|
|
82 for i in xrange(xPoints-1):
|
|
83 mesh.append((
|
|
84 # Destination rectangle
|
|
85 (i*r, j*r,
|
|
86 (i+1)*r, (j+1)*r),
|
|
87 # Source quadrilateral
|
|
88 (xRows[j ][i ], yRows[j ][i ],
|
|
89 xRows[j+1][i ], yRows[j+1][i ],
|
|
90 xRows[j+1][i+1], yRows[j+1][i+1],
|
|
91 xRows[j ][i+1], yRows[j ][i+1]),
|
|
92 ))
|
|
93
|
|
94 return image.transform(image.size, Image.MESH, mesh, self.filtering)
|
|
95
|
|
96
|
|
97 class SineWarp(WarpBase):
|
|
98 """Warp the image using a random composition of sine waves"""
|
|
99
|
|
100 def __init__(self,
|
|
101 amplitudeRange = (3, 6.5),
|
|
102 periodRange = (0.04, 0.1),
|
|
103 ):
|
|
104 self.amplitude = random.uniform(*amplitudeRange)
|
|
105 self.period = random.uniform(*periodRange)
|
|
106 self.offset = (random.uniform(0, math.pi * 2 / self.period),
|
|
107 random.uniform(0, math.pi * 2 / self.period))
|
|
108
|
|
109 def getTransform(self, image):
|
|
110 return (lambda x, y,
|
|
111 a = self.amplitude,
|
|
112 p = self.period,
|
|
113 o = self.offset:
|
|
114 (math.sin( (y+o[0])*p )*a + x,
|
|
115 math.sin( (x+o[1])*p )*a + y))
|
|
116
|
|
117 ### The End ###
|