Mercurial > ift6266
annotate deep/convolutional_dae/scdae.py @ 441:1272dc84a30c
merge
author | Arnaud Bergeron <abergeron@gmail.com> |
---|---|
date | Mon, 03 May 2010 13:55:03 -0400 |
parents | 5ddb1878dfbc |
children |
rev | line source |
---|---|
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
1 from pynnet import * |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
2 |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
3 import numpy |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
4 import theano |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
5 import theano.tensor as T |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
6 |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
7 from itertools import izip |
288
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
8 from ift6266.utils.seriestables import * |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
9 |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
10 class cdae(LayerStack): |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
11 def __init__(self, filter_size, num_filt, num_in, subsampling, corruption, |
298
a222af1d0598
- Adapt to scdae to input_shape change in pynnet
Arnaud Bergeron <abergeron@gmail.com>
parents:
292
diff
changeset
|
12 dtype): |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
13 LayerStack.__init__(self, [ConvAutoencoder(filter_size=filter_size, |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
14 num_filt=num_filt, |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
15 num_in=num_in, |
335 | 16 noise=corruption, |
303
ef28cbb5f464
Use sigmoids with cross-entropy cost in the ConvAutoencoders.
Arnaud Bergeron <abergeron@gmail.com>
parents:
301
diff
changeset
|
17 err=errors.cross_entropy, |
ef28cbb5f464
Use sigmoids with cross-entropy cost in the ConvAutoencoders.
Arnaud Bergeron <abergeron@gmail.com>
parents:
301
diff
changeset
|
18 nlin=nlins.sigmoid, |
298
a222af1d0598
- Adapt to scdae to input_shape change in pynnet
Arnaud Bergeron <abergeron@gmail.com>
parents:
292
diff
changeset
|
19 dtype=dtype), |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
20 MaxPoolLayer(subsampling)]) |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
21 |
298
a222af1d0598
- Adapt to scdae to input_shape change in pynnet
Arnaud Bergeron <abergeron@gmail.com>
parents:
292
diff
changeset
|
22 def build(self, input, input_shape=None): |
a222af1d0598
- Adapt to scdae to input_shape change in pynnet
Arnaud Bergeron <abergeron@gmail.com>
parents:
292
diff
changeset
|
23 LayerStack.build(self, input, input_shape) |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
24 self.cost = self.layers[0].cost |
298
a222af1d0598
- Adapt to scdae to input_shape change in pynnet
Arnaud Bergeron <abergeron@gmail.com>
parents:
292
diff
changeset
|
25 self.pre_params = self.layers[0].pre_params |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
26 |
298
a222af1d0598
- Adapt to scdae to input_shape change in pynnet
Arnaud Bergeron <abergeron@gmail.com>
parents:
292
diff
changeset
|
27 def scdae(filter_sizes, num_filts, subsamplings, corruptions, dtype): |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
28 layers = [] |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
29 old_nfilt = 1 |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
30 for fsize, nfilt, subs, corr in izip(filter_sizes, num_filts, |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
31 subsamplings, corruptions): |
298
a222af1d0598
- Adapt to scdae to input_shape change in pynnet
Arnaud Bergeron <abergeron@gmail.com>
parents:
292
diff
changeset
|
32 layers.append(cdae(fsize, nfilt, old_nfilt, subs, corr, dtype)) |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
33 old_nfilt = nfilt |
334
6143b23e2610
Name the important layers to be able to change them easily later.
Arnaud Bergeron <abergeron@gmail.com>
parents:
314
diff
changeset
|
34 return LayerStack(layers, name='scdae') |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
35 |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
36 def mlp(layer_sizes, dtype): |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
37 layers = [] |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
38 old_size = layer_sizes[0] |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
39 for size in layer_sizes[1:]: |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
40 layers.append(SimpleLayer(old_size, size, activation=nlins.tanh, |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
41 dtype=dtype)) |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
42 old_size = size |
334
6143b23e2610
Name the important layers to be able to change them easily later.
Arnaud Bergeron <abergeron@gmail.com>
parents:
314
diff
changeset
|
43 return LayerStack(layers, name='mlp') |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
44 |
301
be45e7db7cd4
Fix last-minute bugs in the code.
Arnaud Bergeron <abergeron@gmail.com>
parents:
298
diff
changeset
|
45 def scdae_net(in_size, filter_sizes, num_filts, subsamplings, |
298
a222af1d0598
- Adapt to scdae to input_shape change in pynnet
Arnaud Bergeron <abergeron@gmail.com>
parents:
292
diff
changeset
|
46 corruptions, layer_sizes, out_size, dtype): |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
47 rl1 = ReshapeLayer((None,)+in_size) |
301
be45e7db7cd4
Fix last-minute bugs in the code.
Arnaud Bergeron <abergeron@gmail.com>
parents:
298
diff
changeset
|
48 ls = scdae(filter_sizes, num_filts, subsamplings, |
298
a222af1d0598
- Adapt to scdae to input_shape change in pynnet
Arnaud Bergeron <abergeron@gmail.com>
parents:
292
diff
changeset
|
49 corruptions, dtype) |
301
be45e7db7cd4
Fix last-minute bugs in the code.
Arnaud Bergeron <abergeron@gmail.com>
parents:
298
diff
changeset
|
50 x = T.ftensor4() |
298
a222af1d0598
- Adapt to scdae to input_shape change in pynnet
Arnaud Bergeron <abergeron@gmail.com>
parents:
292
diff
changeset
|
51 ls.build(x, input_shape=(1,)+in_size) |
a222af1d0598
- Adapt to scdae to input_shape change in pynnet
Arnaud Bergeron <abergeron@gmail.com>
parents:
292
diff
changeset
|
52 outs = numpy.prod(ls.output_shape) |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
53 rl2 = ReshapeLayer((None, outs)) |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
54 layer_sizes = [outs]+layer_sizes |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
55 ls2 = mlp(layer_sizes, dtype) |
334
6143b23e2610
Name the important layers to be able to change them easily later.
Arnaud Bergeron <abergeron@gmail.com>
parents:
314
diff
changeset
|
56 lrl = SimpleLayer(layer_sizes[-1], out_size, activation=nlins.softmax, |
6143b23e2610
Name the important layers to be able to change them easily later.
Arnaud Bergeron <abergeron@gmail.com>
parents:
314
diff
changeset
|
57 name='output') |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
58 return NNet([rl1, ls, rl2, ls2, lrl], error=errors.nll) |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
59 |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
60 def build_funcs(batch_size, img_size, filter_sizes, num_filters, subs, |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
61 noise, mlp_sizes, out_size, dtype, pretrain_lr, train_lr): |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
62 |
301
be45e7db7cd4
Fix last-minute bugs in the code.
Arnaud Bergeron <abergeron@gmail.com>
parents:
298
diff
changeset
|
63 n = scdae_net((1,)+img_size, filter_sizes, num_filters, subs, |
298
a222af1d0598
- Adapt to scdae to input_shape change in pynnet
Arnaud Bergeron <abergeron@gmail.com>
parents:
292
diff
changeset
|
64 noise, mlp_sizes, out_size, dtype) |
288
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
65 |
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
66 n.save('start.net') |
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
67 |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
68 x = T.fmatrix('x') |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
69 y = T.ivector('y') |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
70 |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
71 def pretrainfunc(net, alpha): |
298
a222af1d0598
- Adapt to scdae to input_shape change in pynnet
Arnaud Bergeron <abergeron@gmail.com>
parents:
292
diff
changeset
|
72 up = trainers.get_updates(net.pre_params, net.cost, alpha) |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
73 return theano.function([x], net.cost, updates=up) |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
74 |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
75 def trainfunc(net, alpha): |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
76 up = trainers.get_updates(net.params, net.cost, alpha) |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
77 return theano.function([x, y], net.cost, updates=up) |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
78 |
301
be45e7db7cd4
Fix last-minute bugs in the code.
Arnaud Bergeron <abergeron@gmail.com>
parents:
298
diff
changeset
|
79 n.build(x, y, input_shape=(batch_size, numpy.prod(img_size))) |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
80 pretrain_funcs_opt = [pretrainfunc(l, pretrain_lr) for l in n.layers[1].layers] |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
81 trainf_opt = trainfunc(n, train_lr) |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
82 evalf_opt = theano.function([x, y], errors.class_error(n.output, y)) |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
83 |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
84 n.build(x, y) |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
85 pretrain_funcs_reg = [pretrainfunc(l, 0.01) for l in n.layers[1].layers] |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
86 trainf_reg = trainfunc(n, 0.1) |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
87 evalf_reg = theano.function([x, y], errors.class_error(n.output, y)) |
277
20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
Arnaud Bergeron <abergeron@gmail.com>
parents:
276
diff
changeset
|
88 |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
89 def select_f(f1, f2, bsize): |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
90 def f(x): |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
91 if x.shape[0] == bsize: |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
92 return f1(x) |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
93 else: |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
94 return f2(x) |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
95 return f |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
96 |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
97 pretrain_funcs = [select_f(p_opt, p_reg, batch_size) for p_opt, p_reg in zip(pretrain_funcs_opt, pretrain_funcs_reg)] |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
98 |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
99 def select_f2(f1, f2, bsize): |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
100 def f(x, y): |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
101 if x.shape[0] == bsize: |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
102 return f1(x, y) |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
103 else: |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
104 return f2(x, y) |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
105 return f |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
106 |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
107 trainf = select_f2(trainf_opt, trainf_reg, batch_size) |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
108 evalf = select_f2(evalf_opt, evalf_reg, batch_size) |
288
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
109 return pretrain_funcs, trainf, evalf, n |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
110 |
288
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
111 def do_pretrain(pretrain_funcs, pretrain_epochs, serie): |
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
112 for layer, f in enumerate(pretrain_funcs): |
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
113 for epoch in xrange(pretrain_epochs): |
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
114 serie.append((layer, epoch), f()) |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
115 |
298
a222af1d0598
- Adapt to scdae to input_shape change in pynnet
Arnaud Bergeron <abergeron@gmail.com>
parents:
292
diff
changeset
|
116 def massage_funcs(pretrain_it, train_it, dset, batch_size, pretrain_funcs, |
a222af1d0598
- Adapt to scdae to input_shape change in pynnet
Arnaud Bergeron <abergeron@gmail.com>
parents:
292
diff
changeset
|
117 trainf, evalf): |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
118 def pretrain_f(f): |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
119 def res(): |
298
a222af1d0598
- Adapt to scdae to input_shape change in pynnet
Arnaud Bergeron <abergeron@gmail.com>
parents:
292
diff
changeset
|
120 for x, y in pretrain_it: |
277
20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
Arnaud Bergeron <abergeron@gmail.com>
parents:
276
diff
changeset
|
121 yield f(x) |
20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
Arnaud Bergeron <abergeron@gmail.com>
parents:
276
diff
changeset
|
122 it = res() |
20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
Arnaud Bergeron <abergeron@gmail.com>
parents:
276
diff
changeset
|
123 return lambda: it.next() |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
124 |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
125 pretrain_fs = map(pretrain_f, pretrain_funcs) |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
126 |
277
20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
Arnaud Bergeron <abergeron@gmail.com>
parents:
276
diff
changeset
|
127 def train_f(f): |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
128 def dset_it(): |
277
20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
Arnaud Bergeron <abergeron@gmail.com>
parents:
276
diff
changeset
|
129 for x, y in train_it: |
20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
Arnaud Bergeron <abergeron@gmail.com>
parents:
276
diff
changeset
|
130 yield f(x, y) |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
131 it = dset_it() |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
132 return lambda: it.next() |
277
20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
Arnaud Bergeron <abergeron@gmail.com>
parents:
276
diff
changeset
|
133 |
20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
Arnaud Bergeron <abergeron@gmail.com>
parents:
276
diff
changeset
|
134 train = train_f(trainf) |
20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
Arnaud Bergeron <abergeron@gmail.com>
parents:
276
diff
changeset
|
135 |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
136 def eval_f(f, dsetf): |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
137 def res(): |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
138 c = 0 |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
139 i = 0 |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
140 for x, y in dsetf(batch_size): |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
141 i += x.shape[0] |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
142 c += f(x, y)*x.shape[0] |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
143 return c/i |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
144 return res |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
145 |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
146 test = eval_f(evalf, dset.test) |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
147 valid = eval_f(evalf, dset.valid) |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
148 |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
149 return pretrain_fs, train, valid, test |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
150 |
277
20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
Arnaud Bergeron <abergeron@gmail.com>
parents:
276
diff
changeset
|
151 def repeat_itf(itf, *args, **kwargs): |
20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
Arnaud Bergeron <abergeron@gmail.com>
parents:
276
diff
changeset
|
152 while True: |
20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
Arnaud Bergeron <abergeron@gmail.com>
parents:
276
diff
changeset
|
153 for e in itf(*args, **kwargs): |
20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
Arnaud Bergeron <abergeron@gmail.com>
parents:
276
diff
changeset
|
154 yield e |
20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
Arnaud Bergeron <abergeron@gmail.com>
parents:
276
diff
changeset
|
155 |
288
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
156 def create_series(): |
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
157 import tables |
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
158 |
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
159 series = {} |
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
160 h5f = tables.openFile('series.h5', 'w') |
314
2937f2a421aa
Print the error sometimes in the pretrain loop.
Arnaud Bergeron <abergeron@gmail.com>
parents:
303
diff
changeset
|
161 class PrintWrap(object): |
2937f2a421aa
Print the error sometimes in the pretrain loop.
Arnaud Bergeron <abergeron@gmail.com>
parents:
303
diff
changeset
|
162 def __init__(self, series): |
2937f2a421aa
Print the error sometimes in the pretrain loop.
Arnaud Bergeron <abergeron@gmail.com>
parents:
303
diff
changeset
|
163 self.series = series |
2937f2a421aa
Print the error sometimes in the pretrain loop.
Arnaud Bergeron <abergeron@gmail.com>
parents:
303
diff
changeset
|
164 |
2937f2a421aa
Print the error sometimes in the pretrain loop.
Arnaud Bergeron <abergeron@gmail.com>
parents:
303
diff
changeset
|
165 def append(self, idx, value): |
2937f2a421aa
Print the error sometimes in the pretrain loop.
Arnaud Bergeron <abergeron@gmail.com>
parents:
303
diff
changeset
|
166 print idx, value |
2937f2a421aa
Print the error sometimes in the pretrain loop.
Arnaud Bergeron <abergeron@gmail.com>
parents:
303
diff
changeset
|
167 self.series.append(idx, value) |
288
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
168 |
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
169 series['recons_error'] = AccumulatorSeriesWrapper( |
314
2937f2a421aa
Print the error sometimes in the pretrain loop.
Arnaud Bergeron <abergeron@gmail.com>
parents:
303
diff
changeset
|
170 base_series=PrintWrap(ErrorSeries(error_name='reconstruction_error', |
2937f2a421aa
Print the error sometimes in the pretrain loop.
Arnaud Bergeron <abergeron@gmail.com>
parents:
303
diff
changeset
|
171 table_name='reconstruction_error', |
2937f2a421aa
Print the error sometimes in the pretrain loop.
Arnaud Bergeron <abergeron@gmail.com>
parents:
303
diff
changeset
|
172 hdf5_file=h5f, |
2937f2a421aa
Print the error sometimes in the pretrain loop.
Arnaud Bergeron <abergeron@gmail.com>
parents:
303
diff
changeset
|
173 index_names=('layer', 'epoch'), |
2937f2a421aa
Print the error sometimes in the pretrain loop.
Arnaud Bergeron <abergeron@gmail.com>
parents:
303
diff
changeset
|
174 title="Reconstruction error (mse)")), |
288
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
175 reduce_every=100) |
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
176 |
292
8108d271c30c
Fix stuff (imports, ...) so that it can run under jobman properly.
Arnaud Bergeron <abergeron@gmail.com>
parents:
290
diff
changeset
|
177 series['train_error'] = AccumulatorSeriesWrapper( |
288
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
178 base_series=ErrorSeries(error_name='training_error', |
290
518589bfee55
Add commas, since that way it's not a syntax error anymore.
Arnaud Bergeron <abergeron@gmail.com>
parents:
288
diff
changeset
|
179 table_name='training_error', |
288
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
180 hdf5_file=h5f, |
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
181 index_names=('iter',), |
292
8108d271c30c
Fix stuff (imports, ...) so that it can run under jobman properly.
Arnaud Bergeron <abergeron@gmail.com>
parents:
290
diff
changeset
|
182 title='Training error (nll)'), |
288
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
183 reduce_every=100) |
292
8108d271c30c
Fix stuff (imports, ...) so that it can run under jobman properly.
Arnaud Bergeron <abergeron@gmail.com>
parents:
290
diff
changeset
|
184 |
8108d271c30c
Fix stuff (imports, ...) so that it can run under jobman properly.
Arnaud Bergeron <abergeron@gmail.com>
parents:
290
diff
changeset
|
185 series['valid_error'] = ErrorSeries(error_name='valid_error', |
8108d271c30c
Fix stuff (imports, ...) so that it can run under jobman properly.
Arnaud Bergeron <abergeron@gmail.com>
parents:
290
diff
changeset
|
186 table_name='valid_error', |
8108d271c30c
Fix stuff (imports, ...) so that it can run under jobman properly.
Arnaud Bergeron <abergeron@gmail.com>
parents:
290
diff
changeset
|
187 hdf5_file=h5f, |
8108d271c30c
Fix stuff (imports, ...) so that it can run under jobman properly.
Arnaud Bergeron <abergeron@gmail.com>
parents:
290
diff
changeset
|
188 index_names=('iter',), |
8108d271c30c
Fix stuff (imports, ...) so that it can run under jobman properly.
Arnaud Bergeron <abergeron@gmail.com>
parents:
290
diff
changeset
|
189 title='Validation error (class)') |
8108d271c30c
Fix stuff (imports, ...) so that it can run under jobman properly.
Arnaud Bergeron <abergeron@gmail.com>
parents:
290
diff
changeset
|
190 |
8108d271c30c
Fix stuff (imports, ...) so that it can run under jobman properly.
Arnaud Bergeron <abergeron@gmail.com>
parents:
290
diff
changeset
|
191 series['test_error'] = ErrorSeries(error_name='test_error', |
8108d271c30c
Fix stuff (imports, ...) so that it can run under jobman properly.
Arnaud Bergeron <abergeron@gmail.com>
parents:
290
diff
changeset
|
192 table_name='test_error', |
8108d271c30c
Fix stuff (imports, ...) so that it can run under jobman properly.
Arnaud Bergeron <abergeron@gmail.com>
parents:
290
diff
changeset
|
193 hdf5_file=h5f, |
8108d271c30c
Fix stuff (imports, ...) so that it can run under jobman properly.
Arnaud Bergeron <abergeron@gmail.com>
parents:
290
diff
changeset
|
194 index_names=('iter',), |
8108d271c30c
Fix stuff (imports, ...) so that it can run under jobman properly.
Arnaud Bergeron <abergeron@gmail.com>
parents:
290
diff
changeset
|
195 title='Test error (class)') |
8108d271c30c
Fix stuff (imports, ...) so that it can run under jobman properly.
Arnaud Bergeron <abergeron@gmail.com>
parents:
290
diff
changeset
|
196 |
8108d271c30c
Fix stuff (imports, ...) so that it can run under jobman properly.
Arnaud Bergeron <abergeron@gmail.com>
parents:
290
diff
changeset
|
197 return series |
288
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
198 |
301
be45e7db7cd4
Fix last-minute bugs in the code.
Arnaud Bergeron <abergeron@gmail.com>
parents:
298
diff
changeset
|
199 class PrintSeries(object): |
be45e7db7cd4
Fix last-minute bugs in the code.
Arnaud Bergeron <abergeron@gmail.com>
parents:
298
diff
changeset
|
200 def append(self, idx, v): |
be45e7db7cd4
Fix last-minute bugs in the code.
Arnaud Bergeron <abergeron@gmail.com>
parents:
298
diff
changeset
|
201 print idx, v |
be45e7db7cd4
Fix last-minute bugs in the code.
Arnaud Bergeron <abergeron@gmail.com>
parents:
298
diff
changeset
|
202 |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
203 if __name__ == '__main__': |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
204 from ift6266 import datasets |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
205 from sgd_opt import sgd_opt |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
206 import sys, time |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
207 |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
208 batch_size = 100 |
301
be45e7db7cd4
Fix last-minute bugs in the code.
Arnaud Bergeron <abergeron@gmail.com>
parents:
298
diff
changeset
|
209 dset = datasets.nist_digits(1000) |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
210 |
288
80ee63c3e749
Add net saving (only the best model) and error saving using SeriesTable
Arnaud Bergeron <abergeron@gmail.com>
parents:
277
diff
changeset
|
211 pretrain_funcs, trainf, evalf, net = build_funcs( |
301
be45e7db7cd4
Fix last-minute bugs in the code.
Arnaud Bergeron <abergeron@gmail.com>
parents:
298
diff
changeset
|
212 img_size = (32, 32), |
277
20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
Arnaud Bergeron <abergeron@gmail.com>
parents:
276
diff
changeset
|
213 batch_size=batch_size, filter_sizes=[(5,5), (3,3)], |
314
2937f2a421aa
Print the error sometimes in the pretrain loop.
Arnaud Bergeron <abergeron@gmail.com>
parents:
303
diff
changeset
|
214 num_filters=[20, 4], subs=[(2,2), (2,2)], noise=[0.2, 0.2], |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
215 mlp_sizes=[500], out_size=10, dtype=numpy.float32, |
303
ef28cbb5f464
Use sigmoids with cross-entropy cost in the ConvAutoencoders.
Arnaud Bergeron <abergeron@gmail.com>
parents:
301
diff
changeset
|
216 pretrain_lr=0.001, train_lr=0.1) |
277
20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
Arnaud Bergeron <abergeron@gmail.com>
parents:
276
diff
changeset
|
217 |
298
a222af1d0598
- Adapt to scdae to input_shape change in pynnet
Arnaud Bergeron <abergeron@gmail.com>
parents:
292
diff
changeset
|
218 t_it = repeat_itf(dset.train, batch_size) |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
219 pretrain_fs, train, valid, test = massage_funcs( |
298
a222af1d0598
- Adapt to scdae to input_shape change in pynnet
Arnaud Bergeron <abergeron@gmail.com>
parents:
292
diff
changeset
|
220 t_it, t_it, dset, batch_size, |
277
20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
Arnaud Bergeron <abergeron@gmail.com>
parents:
276
diff
changeset
|
221 pretrain_funcs, trainf, evalf) |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
222 |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
223 print "pretraining ...", |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
224 sys.stdout.flush() |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
225 start = time.time() |
301
be45e7db7cd4
Fix last-minute bugs in the code.
Arnaud Bergeron <abergeron@gmail.com>
parents:
298
diff
changeset
|
226 do_pretrain(pretrain_fs, 1000, PrintSeries()) |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
227 end = time.time() |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
228 print "done (in", end-start, "s)" |
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
229 |
277
20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
Arnaud Bergeron <abergeron@gmail.com>
parents:
276
diff
changeset
|
230 sgd_opt(train, valid, test, training_epochs=10000, patience=1000, |
276
727ed56fad12
Add reworked code for convolutional auto-encoder.
Arnaud Bergeron <abergeron@gmail.com>
parents:
diff
changeset
|
231 patience_increase=2., improvement_threshold=0.995, |
277
20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
Arnaud Bergeron <abergeron@gmail.com>
parents:
276
diff
changeset
|
232 validation_frequency=250) |
20ebc1f2a9fe
Use softmax for the output layer and rework the dset iterator stuff.
Arnaud Bergeron <abergeron@gmail.com>
parents:
276
diff
changeset
|
233 |