view engine/core/view/camera.cpp @ 697:ecaa4d98f05f tip

Abstracted the GUI code and refactored the GUIChan-specific code into its own module. * Most of the GUIChan code has been refactored into its own gui/guichan module. However, references to the GuiFont class still persist in the Engine and GuiManager code and these will need further refactoring. * GuiManager is now an abstract base class which specific implementations (e.g. GUIChan) should subclass. * The GUIChan GUI code is now a concrete implementation of GuiManager, most of which is in the new GuiChanGuiManager class. * The GUI code in the Console class has been refactored out of the Console and into the GUIChan module as its own GuiChanConsoleWidget class. The rest of the Console class related to executing commands was left largely unchanged. * Existing client code may need to downcast the GuiManager pointer received from FIFE::Engine::getGuiManager() to GuiChanGuiManager, since not all functionality is represented in the GuiManager abstract base class. Python client code can use the new GuiChanGuiManager.castTo static method for this purpose.
author M. George Hansen <technopolitica@gmail.com>
date Sat, 18 Jun 2011 00:28:40 -1000
parents f73be43f69c8
children
line wrap: on
line source

/***************************************************************************
 *   Copyright (C) 2005-2008 by the FIFE team                              *
 *   http://www.fifengine.de                                               *
 *   This file is part of FIFE.                                            *
 *                                                                         *
 *   FIFE is free software; you can redistribute it and/or                 *
 *   modify it under the terms of the GNU Lesser General Public            *
 *   License as published by the Free Software Foundation; either          *
 *   version 2.1 of the License, or (at your option) any later version.    *
 *                                                                         *
 *   This library is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *   Lesser General Public License for more details.                       *
 *                                                                         *
 *   You should have received a copy of the GNU Lesser General Public      *
 *   License along with this library; if not, write to the                 *
 *   Free Software Foundation, Inc.,                                       *
 *   51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA          *
 ***************************************************************************/

// Standard C++ library includes

// 3rd party library includes
#include <SDL.h>

// FIFE includes
// These includes are split up in two parts, separated by one empty line
// First block: files included from the FIFE root src directory
// Second block: files included from the same folder

#include "model/metamodel/grids/cellgrid.h"
#include "model/metamodel/action.h"
#include "model/metamodel/timeprovider.h"
#include "model/structures/map.h"
#include "model/structures/layer.h"
#include "model/structures/instancetree.h"
#include "model/structures/instance.h"
#include "model/structures/location.h"
#include "util/log/logger.h"
#include "util/math/fife_math.h"
#include "util/math/angles.h"
#include "util/time/timemanager.h"
#include "video/renderbackend.h"
#include "video/image.h"
#include "video/imagepool.h"
#include "video/animation.h"
#include "video/animationpool.h"

#include "camera.h"
#include "layercache.h"
#include "visual.h"


namespace FIFE {
	static Logger _log(LM_CAMERA);

	class MapObserver : public MapChangeListener {
		Camera* m_camera;

	public:
		MapObserver(Camera* camera) {
			m_camera = camera;
		}
		virtual ~MapObserver() {}

		virtual void onMapChanged(Map* map, std::vector<Layer*>& changedLayers) {
		}

		virtual void onLayerCreate(Map* map, Layer* layer) {
			m_camera->addLayer(layer);
		}

		virtual void onLayerDelete(Map* map, Layer* layer) {
			m_camera->removeLayer(layer);
		}
	};

	Camera::Camera(const std::string& id,
		Layer *layer,
		const Rect& viewport,
		RenderBackend* renderbackend,
		ImagePool* ipool,
		AnimationPool* apool):
			m_id(id),
			m_matrix(),
			m_inverse_matrix(),
			m_tilt(0),
			m_rotation(0),
			m_zoom(1),
			m_location(),
			m_prev_origo(ScreenPoint(0,0,0)),
			m_cur_origo(ScreenPoint(0,0,0)),
			m_viewport(),
			m_screen_cell_width(1),
			m_screen_cell_height(1),
			m_reference_scale(1),
			m_enabled(true),
			m_attachedto(NULL),
			m_image_dimensions(),
			m_iswarped(false),
			m_renderers(),
			m_pipeline(),
			m_updated(false),
			m_renderbackend(renderbackend),
			m_ipool(ipool),
			m_apool(apool),
			m_layer_to_instances(),
			m_lighting(false),
			m_light_colors() {

		m_viewport = viewport;
		m_map_observer = new MapObserver(this);
		m_map = 0;
		Location location;
		location.setLayer(layer);
		setLocation(location);
		if(m_renderbackend->getName() == "SDL") {
			m_backendSDL = true;
		} else {
			m_backendSDL = false;
		}
	}

	Camera::~Camera() {
		// Trigger removal of LayerCaches and MapObserver
		updateMap(NULL);

		std::map<std::string, RendererBase*>::iterator r_it = m_renderers.begin();
		for(; r_it != m_renderers.end(); ++r_it) {
			delete r_it->second;
		}
		m_renderers.clear();
		delete m_map_observer;
	}

	void Camera::setTilt(double tilt) {
		if(m_tilt != tilt) {
			m_tilt = tilt;
			updateReferenceScale();
			updateMatrices();
			m_iswarped = true;
		}
	}

	double Camera::getTilt() const {
		return m_tilt;
	}

	void Camera::setRotation(double rotation) {
		if(m_rotation != rotation) {
			m_rotation = rotation;
			updateReferenceScale();
			updateMatrices();
			m_iswarped = true;
		}
	}

	double Camera::getRotation() const {
		return m_rotation;
	}

	void Camera::setZoom(double zoom) {
		if(m_zoom!=zoom) {
			m_zoom = zoom;
			if (m_zoom < 0.001) {
				m_zoom = 0.001;
			}
			updateMatrices();
		}
	}

	double Camera::getZoom() const {
		return m_zoom;
	}

	void Camera::setCellImageDimensions(unsigned int width, unsigned int height) {
		m_screen_cell_width = width;
		m_screen_cell_height = height;
		updateReferenceScale();
		updateMatrices();
		m_iswarped = true;
	}

	void Camera::setLocation(const Location& location) {
		// initialize first set properly
		if ((m_prev_origo == m_cur_origo) && (m_prev_origo == ScreenPoint(0,0,0))) {
			m_cur_origo = toScreenCoordinates(ExactModelCoordinate(0,0,0));
			m_prev_origo = m_cur_origo;
		}

		CellGrid* cell_grid = NULL;
		if (location.getLayer()) {
			cell_grid = location.getLayer()->getCellGrid();
		} else {
			throw Exception("Location without layer given to Camera::setLocation");
		}
		if (!cell_grid) {
			throw Exception("Camera layer has no cellgrid specified");
		}

		m_location = location;
		updateMatrices();

		// WARNING
		// It is important that m_location is already set,
		// as the updates which are triggered here
		// need to calculate screen-coordinates
		// which depend on m_location.
		updateMap(location.getMap());

		m_cur_origo = toScreenCoordinates(ExactModelCoordinate(0,0,0));
	}

	void Camera::updateMap(Map* map)
	{
		if(m_map == map)
		{
			return;
		}
		if(m_map) {
			m_map->removeChangeListener(m_map_observer);
			const std::list<Layer*>& layers = m_map->getLayers();
			for(std::list<Layer*>::const_iterator i = layers.begin(); i !=layers.end(); ++i) {
				removeLayer(*i);
			}
		}
		if(map) {
			map->addChangeListener(m_map_observer);
			const std::list<Layer*>& layers = map->getLayers();
			for(std::list<Layer*>::const_iterator i = layers.begin(); i !=layers.end(); ++i)
				addLayer(*i);
		}
		m_map = map;
	}

	Point Camera::getCellImageDimensions() {
		return getCellImageDimensions(m_location.getLayer());
	}

	Point Camera::getCellImageDimensions(Layer* layer) {
		if (layer == m_location.getLayer()) {
			return Point( m_screen_cell_width, m_screen_cell_height );
		}
		std::map<Layer*, Point>::iterator it = m_image_dimensions.find(layer);
		if (it != m_image_dimensions.end()) {
			return it->second;
		}
		Point p;
		CellGrid* cg = layer->getCellGrid();
		assert(cg);
		DoublePoint dimensions = getLogicalCellDimensions(layer);
		p.x = static_cast<int>(round(m_reference_scale * dimensions.x));
		p.y = static_cast<int>(round(m_reference_scale * dimensions.y));
		m_image_dimensions[layer] = p;
		return p;
	}

	Location Camera::getLocation() const {
		return m_location;
	}

	Location& Camera::getLocationRef() {
		return m_location;
	}

	void Camera::setViewPort(const Rect& viewport) {
		m_viewport = viewport;
	}

	const Rect& Camera::getViewPort() const {
		return m_viewport;
	}

	void Camera::setEnabled(bool enabled) {
		m_enabled = enabled;
	}

	bool Camera::isEnabled() {
		return m_enabled;
	}

	Point3D Camera::getOrigin() const {
		return m_cur_origo;
	}

	void Camera::updateMatrices() {
		double scale = m_reference_scale;
		m_matrix.loadScale(scale, scale, scale);
		m_vs_matrix.loadScale(scale,scale,scale);
		if (m_location.getLayer()) {
			CellGrid* cg = m_location.getLayer()->getCellGrid();
			if (cg) {
				ExactModelCoordinate pt = m_location.getMapCoordinates();
				m_matrix.applyTranslate( -pt.x *m_reference_scale,-pt.y *m_reference_scale, 0);
			}
		}
		scale = m_zoom;
		m_matrix.applyScale(scale, scale, scale);
		m_matrix.applyRotate(-m_rotation, 0.0, 0.0, 1.0);
		m_matrix.applyRotate(-m_tilt, 1.0, 0.0, 0.0);
		m_matrix.applyTranslate(+m_viewport.x+m_viewport.w/2, +m_viewport.y+m_viewport.h/2, 0);
		m_inverse_matrix = m_matrix.inverse();


		m_vs_matrix.applyTranslate(0,0,0);
		m_vs_matrix.applyRotate(-m_rotation, 0.0, 0.0, 1.0);
		m_vs_matrix.applyRotate(-m_tilt, 1.0, 0.0, 0.0);
		m_vs_inverse_matrix = m_vs_matrix.inverse();

		// calculate the screen<->virtual screen transformation
		// this explicitly ignores the z-value.
		m_vscreen_2_screen = m_matrix;
		// NOTE: mult4by4 is an in-place modification.
		m_vscreen_2_screen.mult4by4(m_vs_inverse_matrix);
		// set the z transformation to unity
		const int N=4;
		for(int i=0; i!=N; ++i) {
			  m_vscreen_2_screen[2*N + i] = 0;
			  m_vscreen_2_screen[i*N + 2] = 0;
		}
		m_vscreen_2_screen[2*N + 2] = 1;
		m_screen_2_vscreen = m_vscreen_2_screen.inverse();

		// FL_WARN(_log, LMsg("matrix: ") << m_matrix << " 1: " << m_matrix.inverse().mult4by4(m_matrix));
// 		FL_WARN(_log, LMsg("vs2s matrix: ") << m_vscreen_2_screen << " s2vs matrix: " << m_screen_2_vscreen);
	}

	void Camera::calculateZValue(ScreenPoint& screen_coords) {
		int dy = -(screen_coords.y - toScreenCoordinates(m_location.getMapCoordinates()).y);
		screen_coords.z = static_cast<int>(Mathd::Tan(m_tilt * (Mathd::pi() / 180.0)) * static_cast<double>(dy));
	}

	ExactModelCoordinate Camera::toMapCoordinates(ScreenPoint screen_coords, bool z_calculated) {
		if (!z_calculated) {
			calculateZValue(screen_coords);
		}
		return m_inverse_matrix  * intPt2doublePt(screen_coords);
	}

	ScreenPoint Camera::toScreenCoordinates(ExactModelCoordinate elevation_coords) {
		ExactModelCoordinate p = elevation_coords;
		ScreenPoint pt = doublePt2intPt( m_matrix* p  );
		return pt;
	}

	DoublePoint3D  Camera::toVirtualScreenCoordinates(ExactModelCoordinate elevation_coords) {
		ExactModelCoordinate p = elevation_coords;
		DoublePoint3D  pt = (m_vs_matrix * p);
		return pt;
	}

	ScreenPoint Camera::virtualScreenToScreen(const DoublePoint3D& p) {
		return doublePt2intPt(m_vscreen_2_screen * p);
	}

	DoublePoint3D Camera::screenToVirtualScreen(const ScreenPoint& p) {
		return m_screen_2_vscreen * intPt2doublePt(p);
	}

	DoublePoint Camera::getLogicalCellDimensions(Layer* layer) {
		CellGrid* cg = NULL;
		if (layer) {
			cg = layer->getCellGrid();
		}
		assert(cg);

		ModelCoordinate cell(0,0);
		std::vector<ExactModelCoordinate> vertices;
		cg->getVertices(vertices, cell);

		DoubleMatrix mtx;
		mtx.loadRotate(m_rotation, 0.0, 0.0, 1.0);
		mtx.applyRotate(m_tilt, 1.0, 0.0, 0.0);

		double x1 = 0;
		double x2 = 0;
		double y1 = 0;
		double y2 = 0;

		for (unsigned int i = 0; i < vertices.size(); i++) {
			vertices[i] = cg->toMapCoordinates(vertices[i]);
			vertices[i] = mtx * vertices[i];
			if (i == 0) {
				x1 = x2 = vertices[0].x;
				y1 = y2 = vertices[0].y;
			} else {
				x1 = std::min(vertices[i].x, x1);
				x2 = std::max(vertices[i].x, x2);
				y1 = std::min(vertices[i].y, y1);
				y2 = std::max(vertices[i].y, y2);
			}
		}
		return DoublePoint( x2 - x1, y2 - y1 );
	}

	void Camera::updateReferenceScale() {
		DoublePoint dim = getLogicalCellDimensions(m_location.getLayer());
		m_reference_scale = static_cast<double>(m_screen_cell_width) / dim.x;

		FL_DBG(_log, "Updating reference scale");
		FL_DBG(_log, LMsg("   tilt=") << m_tilt << " rot=" << m_rotation);
		FL_DBG(_log, LMsg("   m_screen_cell_width=") << m_screen_cell_width);
	}

	bool Camera::testRenderedViewPort() {
		Map* map = m_location.getMap();
		Rect cv = m_viewport;
		int cv2x = cv.x+cv.w;
		int cv2y = cv.y+cv.h;
		bool trec1 = false, trec2 = false, trec3 = false, trec4 = false;
		Rect rec1 = Rect(cv.x, cv.y, 1, 1);
		Rect rec2 = Rect(cv.x, cv2y, 1, 1);
		Rect rec3 = Rect(cv2x, cv.y, 1, 1);
		Rect rec4 = Rect(cv2x, cv2y, 1, 1);

		const std::list<Layer*>& layers = map->getLayers();
		std::list<Layer*>::const_iterator layer_it = layers.begin();
		m_layer_to_instances.clear();
		const RenderList& layer_instances = m_layer_to_instances[*layer_it];
		RenderList::const_iterator instance_it = layer_instances.begin();
		for(; instance_it != layer_instances.end(); ++instance_it) {
			const RenderItem& vc = **instance_it;
			if(vc.dimensions.intersects(rec1) && !trec1) {
				trec1 = true;
			}
			if(vc.dimensions.intersects(rec2) && !trec2) {
				trec2 = true;
			}
			if(trec1 && trec2) {
				break;
			}
		}
		if(trec1 && trec2) {
			RenderList::const_reverse_iterator instance_itr = layer_instances.rbegin();
			for(; instance_itr != layer_instances.rend(); ++instance_itr) {
				const RenderItem& vc = **instance_itr;
				if(vc.dimensions.intersects(rec3) && !trec3) {
					trec3 = true;
				}
				if(vc.dimensions.intersects(rec4) && !trec4) {
					trec4 = true;
				}
				if(trec3 && trec4) {
					break;
				}
			}
		}

		if(trec1 && trec2 && trec3 && trec4) {
			return false;
		}
		return true;
	}

	void Camera::getMatchingInstances(ScreenPoint screen_coords, Layer& layer, std::list<Instance*>& instances) {
		instances.clear();
		const RenderList& layer_instances = m_layer_to_instances[&layer];
		RenderList::const_iterator instance_it = layer_instances.end();
		while (instance_it != layer_instances.begin()) {
			--instance_it;
			Instance* i = (*instance_it)->instance;
			const RenderItem& vc = **instance_it;
			if ((vc.dimensions.contains(Point(screen_coords.x, screen_coords.y)))) {
				assert(vc.image);
				Uint8 r, g, b, a;
				int x = screen_coords.x - vc.dimensions.x;
				int y = screen_coords.y - vc.dimensions.y;
				if (m_zoom != 1.0) {
					double fx = static_cast<double>(x);
					double fy = static_cast<double>(y);
					double fow = static_cast<double>(vc.image->getWidth());
					double foh = static_cast<double>(vc.image->getHeight());
					double fsw = static_cast<double>(vc.dimensions.w);
					double fsh = static_cast<double>(vc.dimensions.h);
					x = static_cast<int>(round(fx / fsw * fow));
					y = static_cast<int>(round(fy / fsh * foh));
				}
				vc.image->getPixelRGBA(x, y, &r, &g, &b, &a);
				// instance is hit with mouse if not totally transparent
				if (a != 0) {
					instances.push_back(i);
				}
			}
		}
	}

	void Camera::getMatchingInstances(Rect screen_rect, Layer& layer, std::list<Instance*>& instances) {
		instances.clear();
		const RenderList& layer_instances = m_layer_to_instances[&layer];
		RenderList::const_iterator instance_it = layer_instances.end();
		while (instance_it != layer_instances.begin()) {
			--instance_it;
			Instance* i = (*instance_it)->instance;;
			const RenderItem& vc = **instance_it;
			if ((vc.dimensions.intersects(screen_rect))) {
				assert(vc.image);
				Uint8 r, g, b, a;
				for(int xx = screen_rect.x; xx < screen_rect.x + screen_rect.w; xx++) {
					for(int yy = screen_rect.y; yy < screen_rect.y + screen_rect.h; yy++) {
						if ((vc.dimensions.contains(Point(xx, yy)))) {
							int x = xx - vc.dimensions.x;
							int y = yy - vc.dimensions.y;
							if (m_zoom != 1.0) {
								double fx = static_cast<double>(x);
								double fy = static_cast<double>(y);
								double fow = static_cast<double>(vc.image->getWidth());
								double foh = static_cast<double>(vc.image->getHeight());
								double fsw = static_cast<double>(vc.dimensions.w);
								double fsh = static_cast<double>(vc.dimensions.h);
								x = static_cast<int>(round(fx / fsw * fow));
								y = static_cast<int>(round(fy / fsh * foh));
							}
							vc.image->getPixelRGBA(x, y, &r, &g, &b, &a);
							// instance is hit with mouse if not totally transparent
							if (a != 0) {
								instances.push_back(i);
								goto found_non_transparent_pixel;
							}
						}
					}
				}
				found_non_transparent_pixel:;
			}
		}
	}

	void Camera::getMatchingInstances(Location& loc, std::list<Instance*>& instances, bool use_exactcoordinates) {
		instances.clear();
		const RenderList& layer_instances = m_layer_to_instances[loc.getLayer()];
		RenderList::const_iterator instance_it = layer_instances.end();
		while (instance_it != layer_instances.begin()) {
			--instance_it;
			Instance* i = (*instance_it)->instance;
			if (use_exactcoordinates) {
				if (i->getLocationRef().getExactLayerCoordinatesRef() == loc.getExactLayerCoordinatesRef()) {
					instances.push_back(i);
				}
			} else {
				if (i->getLocationRef().getLayerCoordinates() == loc.getLayerCoordinates()) {
					instances.push_back(i);
				}
			}
		}
	}

	void Camera::attach(Instance *instance) {
		// fail if the layers aren't the same
		if (m_location.getLayer()->getId() != instance->getLocation().getLayer()->getId()) {
			FL_WARN(_log, "Tried to attach camera to instance on different layer.");
			return ;
		}
		m_attachedto = instance;
	}

	void Camera::detach() {
		m_attachedto = NULL;
	}

	void Camera::update() {
		if( !m_attachedto ) {
			return;
		}
		Location loc(m_location);
		loc.setExactLayerCoordinates( m_attachedto->getLocationRef().getExactLayerCoordinates(m_location.getLayer()) );
		setLocation(loc);
		updateMatrices();
	}

	void Camera::refresh() {
		updateMatrices();
		m_iswarped = true;
	}

	void Camera::resetUpdates() {
		m_iswarped = false;
		m_prev_origo = m_cur_origo;
	}

	bool pipelineSort(const RendererBase* lhs, const RendererBase* rhs) {
		return (lhs->getPipelinePosition() < rhs->getPipelinePosition());
	}

	void Camera::addRenderer(RendererBase* renderer) {
		renderer->setRendererListener(this);
		m_renderers[renderer->getName()] = renderer;
		if (renderer->isEnabled()) {
			m_pipeline.push_back(renderer);
		}
		m_pipeline.sort(pipelineSort);
	}

	void Camera::onRendererPipelinePositionChanged(RendererBase* renderer) {
		m_pipeline.sort(pipelineSort);
	}

	void Camera::onRendererEnabledChanged(RendererBase* renderer) {
		assert(m_renderers[renderer->getName()]);
		if (renderer->isEnabled()) {
			FL_LOG(_log, LMsg("Enabling renderer ") << renderer->getName());
			m_pipeline.push_back(renderer);
			m_pipeline.sort(pipelineSort);
		} else {
			m_pipeline.remove(renderer);
		}
	}

	RendererBase* Camera::getRenderer(const std::string& name) {
		return m_renderers[name];
	}

	void Camera::resetRenderers() {
		std::map<std::string, RendererBase*>::iterator r_it = m_renderers.begin();
		for (; r_it != m_renderers.end(); ++r_it) {
			Map* map = m_location.getMap();
			r_it->second->reset();
		}
	}

	void Camera::addLayer(Layer* layer) {
		m_cache[layer] = new LayerCache(this, m_ipool, m_apool);
		m_cache[layer]->setLayer(layer);
		m_layer_to_instances[layer] = RenderList();
	}

	void Camera::removeLayer(Layer* layer) {
		delete m_cache[layer];
		m_cache.erase(layer);
		m_layer_to_instances.erase(layer);
	}

	void Camera::setLightingColor(float red, float green, float blue, float alpha) {
		m_lighting = true;
		m_light_colors.clear();
		m_light_colors.push_back(red);
		m_light_colors.push_back(green);
		m_light_colors.push_back(blue);
		m_light_colors.push_back(alpha);
	}

	std::vector<float> Camera::getLightingColor() {
		if(m_light_colors.empty()) {
			for(int colors = 0; colors != 4; ++colors) {
				m_light_colors.push_back(1.0f);
			}
		}
		return m_light_colors;
	}

	void Camera::resetLightingColor() {
		m_lighting = false;
		m_renderbackend->resetLighting();
	}

	void Camera::render() {
		Transform transform = NormalTransform;
		if(m_iswarped)
			  transform = WarpedTransform;
		m_iswarped = false;

		Map* map = m_location.getMap();
		if (!map) {
			FL_ERR(_log, "No map for camera found");
			return;
		}
		//if ((!map->isChanged()) && (!m_iswarped) && (cammove == ScreenPoint(0,0,0))) {
		//	return;
		//}

		if (m_renderbackend->getLightingModel() != 0) {
			m_renderbackend->resetStencilBuffer(0);
			if (m_lighting) {
				m_renderbackend->setLighting(m_light_colors[0], m_light_colors[1], m_light_colors[2], m_light_colors[3]);
			}
		}

		if(m_backendSDL) {
			m_renderbackend->pushClipArea(getViewPort());
		} else {
			m_renderbackend->pushClipArea(getViewPort(), testRenderedViewPort());
		}

		// update each layer
// 		m_layer_to_instances.clear();

		const std::list<Layer*>& layers = map->getLayers();
		std::list<Layer*>::const_iterator layer_it = layers.begin();
		for (;layer_it != layers.end(); ++layer_it) {
			LayerCache* cache = m_cache[*layer_it];
			if(!cache) {
				addLayer(*layer_it);
				cache = m_cache[*layer_it];
				FL_ERR(_log, LMsg("Layer Cache miss! (This shouldn't happen!)") << (*layer_it)->getId());
			}
			RenderList& instances_to_render = m_layer_to_instances[*layer_it];
			cache->update(transform, instances_to_render);

			std::list<RendererBase*>::iterator r_it = m_pipeline.begin();
			for (; r_it != m_pipeline.end(); ++r_it) {
				if ((*r_it)->isActivedLayer(*layer_it)) {
					(*r_it)->render(this, *layer_it, instances_to_render);
				}
			}
		}

		if (m_lighting) {
			m_renderbackend->resetLighting();
		}

		m_renderbackend->popClipArea();
		resetUpdates();
		m_updated = true;
	}

}