Mercurial > fife-parpg
view engine/core/util/math/matrix.h @ 697:ecaa4d98f05f tip
Abstracted the GUI code and refactored the GUIChan-specific code into its own module.
* Most of the GUIChan code has been refactored into its own gui/guichan module. However, references to the GuiFont class still persist in the Engine and GuiManager code and these will need further refactoring.
* GuiManager is now an abstract base class which specific implementations (e.g. GUIChan) should subclass.
* The GUIChan GUI code is now a concrete implementation of GuiManager, most of which is in the new GuiChanGuiManager class.
* The GUI code in the Console class has been refactored out of the Console and into the GUIChan module as its own GuiChanConsoleWidget class. The rest of the Console class related to executing commands was left largely unchanged.
* Existing client code may need to downcast the GuiManager pointer received from FIFE::Engine::getGuiManager() to GuiChanGuiManager, since not all functionality is represented in the GuiManager abstract base class. Python client code can use the new GuiChanGuiManager.castTo static method for this purpose.
author | M. George Hansen <technopolitica@gmail.com> |
---|---|
date | Sat, 18 Jun 2011 00:28:40 -1000 |
parents | 07b1cf8e92b5 |
children |
line wrap: on
line source
/*************************************************************************** * Copyright (C) 2005-2008 by the FIFE team * * http://www.fifengine.de * * This file is part of FIFE. * * * * FIFE is free software; you can redistribute it and/or * * modify it under the terms of the GNU Lesser General Public * * License as published by the Free Software Foundation; either * * version 2.1 of the License, or (at your option) any later version. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * * Lesser General Public License for more details. * * * * You should have received a copy of the GNU Lesser General Public * * License along with this library; if not, write to the * * Free Software Foundation, Inc., * * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * ***************************************************************************/ /*************************************************************************** * Includes some heavy copying from mathgl-pp project * * (http://sourceforge.net/projects/mathgl-pp/) * ***************************************************************************/ #ifndef FIFE_UTIL_MATRIX_H #define FIFE_UTIL_MATRIX_H // Standard C++ library includes #include <cassert> #include <iostream> // Platform specific includes // 3rd party library includes // FIFE includes // These includes are split up in two parts, separated by one empty line // First block: files included from the FIFE root src directory // Second block: files included from the same folder #include "util/base/fife_stdint.h" #include "util/structures/point.h" #include "fife_math.h" namespace FIFE { /** Minimal matrix class to assist in view 3d calculations */ template <typename T> class Matrix { public: Matrix<T>() {} template <typename U> friend class Matrix; template <typename U> Matrix<T>(const Matrix<U>& mat) { memmove(m, mat.m, 16*sizeof(T)); } ~Matrix() {} /** Adjoint method inverse, constant time inversion implementation */ Matrix inverse() const { Matrix ret(adjoint()); T determinant = m0*ret[0] + m1*ret[4] + m2*ret[8] + m3*ret[12]; assert(determinant!=0 && "Singular matrix has no inverse"); ret/=determinant; return ret; } /** Divide this matrix by a scalar */ inline Matrix& operator/= (T val) { for (register unsigned i = 0; i < 16; ++i) m[i] /= val; return *this; } /** Get the adjoint matrix */ Matrix adjoint() const { Matrix ret; ret[0] = cofactorm0(); ret[1] = -cofactorm4(); ret[2] = cofactorm8(); ret[3] = -cofactorm12(); ret[4] = -cofactorm1(); ret[5] = cofactorm5(); ret[6] = -cofactorm9(); ret[7] = cofactorm13(); ret[8] = cofactorm2(); ret[9] = -cofactorm6(); ret[10] = cofactorm10(); ret[11] = -cofactorm14(); ret[12] = -cofactorm3(); ret[13] = cofactorm7(); ret[14] = -cofactorm11(); ret[15] = cofactorm15(); return ret; } /** Make this a rotation matrix */ inline Matrix& loadRotate(T angle, T x, T y, T z) { register T magSqr = x*x + y*y + z*z; if (magSqr != 1.0) { register T mag = sqrt(magSqr); x/=mag; y/=mag; z/=mag; } T c = Math<T>::Cos(angle*Math<T>::pi()/180); T s = Math<T>::Sin(angle*Math<T>::pi()/180); m0 = x*x*(1-c)+c; m1 = y*x*(1-c)+z*s; m2 = z*x*(1-c)-y*s; m3 = 0; m4 = x*y*(1-c)-z*s; m5 = y*y*(1-c)+c; m6 = z*y*(1-c)+x*s; m7 = 0; m8 = x*z*(1-c)+y*s; m9 = y*z*(1-c)-x*s; m10 = z*z*(1-c)+c; m11 = 0; m12 = 0; m13 = 0; m14 = 0; m15 = 1; return *this; } /** Apply scale into this matrix */ inline Matrix& applyScale(T x, T y, T z) { static Matrix<T> temp; temp.loadScale(x,y,z); *this = temp.mult4by4(*this); return *this; } /** Make this a scale matrix */ inline Matrix& loadScale(T x, T y, T z = 1) { m0 = x; m4 = 0; m8 = 0; m12 = 0; m1 = 0; m5 = y; m9 = 0; m13 = 0; m2 = 0; m6 = 0; m10 = z; m14 = 0; m3 = 0; m7 = 0; m11 = 0; m15 = 1; return *this; } /** Apply translation into this matrix */ inline Matrix& applyTranslate(T x, T y, T z) { static Matrix<T> temp; temp.loadTranslate(x,y,z); *this = temp.mult4by4(*this); return *this; } /** Make this a translation matrix */ inline Matrix& loadTranslate( const T x, const T y, const T z) { m0 = 1; m4 = 0; m8 = 0; m12 = x; m1 = 0; m5 = 1; m9 = 0; m13 = y; m2 = 0; m6 = 0; m10 = 1; m14 = z; m3 = 0; m7 = 0; m11 = 0; m15 = 1; return *this; } /** Transform given point using this matrix */ inline PointType3D<T> operator* (const PointType3D<T>& vec) { return PointType3D<T> ( vec.x * m0 + vec.y * m4 + vec.z * m8 + m12, vec.x * m1 + vec.y * m5 + vec.z * m9 + m13, vec.x * m2 + vec.y * m6 + vec.z * m10 + m14 ); } /** Direct access to the matrix elements, just remember they are in column major format!! */ inline T& operator[] (int ind) { assert(ind > -1 && ind < 16); return m[ind]; } inline const T& operator[] (int ind) const { assert(ind > -1 && ind < 16); return m[ind]; } /** Apply the matrix dot product to this matrix */ inline Matrix& mult3by3(const Matrix& mat) { Matrix temp(*this); m0 = temp.m0*mat.m0+temp.m4*mat.m1+temp.m8*mat.m2; m4 = temp.m0*mat.m4+temp.m4*mat.m5+temp.m8*mat.m6; m8 = temp.m0*mat.m8+temp.m4*mat.m9+temp.m8*mat.m10; m1 = temp.m1*mat.m0+temp.m5*mat.m1+temp.m9*mat.m2; m5 = temp.m1*mat.m4+temp.m5*mat.m5+temp.m9*mat.m6; m9 = temp.m1*mat.m8+temp.m5*mat.m9+temp.m9*mat.m10; m2 = temp.m2*mat.m0+temp.m6*mat.m1+temp.m10*mat.m2; m6 = temp.m2*mat.m4+temp.m6*mat.m5+temp.m10*mat.m6; m10 = temp.m2*mat.m8+temp.m6*mat.m9+temp.m10*mat.m10; m3 = temp.m3*mat.m0+temp.m7*mat.m1+temp.m11*mat.m2; m7 = temp.m3*mat.m4+temp.m7*mat.m5+temp.m11*mat.m6; m11 = temp.m3*mat.m8+temp.m7*mat.m9+temp.m11*mat.m10; return *this; } /** this->Rmult4by4(temp) == [temp] X [*this] **/ /** also equal to temp->mult4by4(*this) **/ inline Matrix<T>& Rmult4by4(const Matrix<T>& mat) { Matrix temp(*this); m0 = mat.m0*temp.m0+mat.m4*temp.m1+mat.m8*temp.m2+mat.m12*temp.m3; m4 = mat.m0*temp.m4+mat.m4*temp.m5+mat.m8*temp.m6+mat.m12*temp.m7; m8 = mat.m0*temp.m8+mat.m4*temp.m9+mat.m8*temp.m10+mat.m12*temp.m11; m12 = mat.m0*temp.m12+mat.m4*temp.m13+mat.m8*temp.m14+mat.m12*temp.m15; m1 = mat.m1*temp.m0 + mat.m5*temp.m1 + mat.m9*temp.m2+mat.m13*temp.m3; m5 = mat.m1*temp.m4 + mat.m5*temp.m5 + mat.m9*temp.m6+mat.m13*temp.m7; m9 = mat.m1*temp.m8 + mat.m5*temp.m9 + mat.m9*temp.m10+mat.m13*temp.m11; m13 = mat.m1*temp.m12+ mat.m5*temp.m13 + mat.m9*temp.m14+mat.m13*temp.m15; m2 = mat.m2*temp.m0+mat.m6*temp.m1+mat.m10*temp.m2+mat.m14*temp.m3; m6 = mat.m2*temp.m4+mat.m6*temp.m5+mat.m10*temp.m6+mat.m14*temp.m7; m10 = mat.m2*temp.m8+mat.m6*temp.m9+mat.m10*temp.m10+mat.m14*temp.m11; m14 = mat.m2*temp.m12+mat.m6*temp.m13+mat.m10*temp.m14+mat.m14*temp.m15; m3 = mat.m3*temp.m0+mat.m7*temp.m1+mat.m11*temp.m2+mat.m15*temp.m3; m7 = mat.m3*temp.m4+mat.m7*temp.m5+mat.m11*temp.m6+mat.m15*temp.m7; m11 = mat.m3*temp.m8+mat.m7*temp.m9+mat.m11*temp.m10+mat.m15*temp.m11; m15 = mat.m3*temp.m12+mat.m7*temp.m13+mat.m11*temp.m14+mat.m15*temp.m15; return *this; } inline Matrix<T>& mult4by4(const Matrix<T>& mat) { Matrix temp(*this); m0 = temp.m0*mat.m0+temp.m4*mat.m1+temp.m8*mat.m2+temp.m12*mat.m3; m4 = temp.m0*mat.m4+temp.m4*mat.m5+temp.m8*mat.m6+temp.m12*mat.m7; m8 = temp.m0*mat.m8+temp.m4*mat.m9+temp.m8*mat.m10+temp.m12*mat.m11; m12 = temp.m0*mat.m12+temp.m4*mat.m13+temp.m8*mat.m14+temp.m12*mat.m15; m1 = temp.m1*mat.m0 + temp.m5*mat.m1 + temp.m9*mat.m2+temp.m13*mat.m3; m5 = temp.m1*mat.m4 + temp.m5*mat.m5 + temp.m9*mat.m6+temp.m13*mat.m7; m9 = temp.m1*mat.m8 + temp.m5*mat.m9 + temp.m9*mat.m10+temp.m13*mat.m11; m13 = temp.m1*mat.m12+ temp.m5*mat.m13 + temp.m9*mat.m14+temp.m13*mat.m15; m2 = temp.m2*mat.m0+temp.m6*mat.m1+temp.m10*mat.m2+temp.m14*mat.m3; m6 = temp.m2*mat.m4+temp.m6*mat.m5+temp.m10*mat.m6+temp.m14*mat.m7; m10 = temp.m2*mat.m8+temp.m6*mat.m9+temp.m10*mat.m10+temp.m14*mat.m11; m14 = temp.m2*mat.m12+temp.m6*mat.m13+temp.m10*mat.m14+temp.m14*mat.m15; m3 = temp.m3*mat.m0+temp.m7*mat.m1+temp.m11*mat.m2+temp.m15*mat.m3; m7 = temp.m3*mat.m4+temp.m7*mat.m5+temp.m11*mat.m6+temp.m15*mat.m7; m11 = temp.m3*mat.m8+temp.m7*mat.m9+temp.m11*mat.m10+temp.m15*mat.m11; m15 = temp.m3*mat.m12+temp.m7*mat.m13+temp.m11*mat.m14+temp.m15*mat.m15; return *this; } Matrix& applyRotate(T angle, T x, T y, T z) { static Matrix<T> temp; temp.loadRotate(angle,x,y,z); *this = temp.mult4by4(*this); return *this; } private: #define cofactor_maker(f1,mj1,mi1, f2,mj2,mi2, f3,mj3,mi3) \ f1*(mj1*mi1-mj2*mi3) + f2*(mj2*mi2-mj3*mi1) + f3*(mj3*mi3-mj1*mi2) inline T cofactorm0() const { return cofactor_maker(m5,m10,m15, m6,m11,m13, m7,m9,m14); } inline T cofactorm1() const { return cofactor_maker(m6,m11,m12, m7,m8,m14, m4,m10,m15); } inline T cofactorm2() const { return cofactor_maker(m7,m8,m13, m4,m9,m15, m5,m11,m12); } inline T cofactorm3() const { return cofactor_maker(m4,m9,m14, m5,m10,m12, m6,m8,m13); } inline T cofactorm4() const { return cofactor_maker(m9,m14,m3, m10,m15,m1, m11,m13,m2); } inline T cofactorm5() const { return cofactor_maker(m10,m15,m0, m11,m12,m2, m8,m14,m3); } inline T cofactorm6() const { return cofactor_maker(m11,m12,m1, m8,m13,m3, m9,m15,m0); } inline T cofactorm7() const { return cofactor_maker(m8,m13,m2, m9,m14,m0, m10,m12,m1); } inline T cofactorm8() const { return cofactor_maker(m13,m2,m7, m14,m3,m5, m15,m1,m6); } inline T cofactorm9() const { return cofactor_maker(m14,m13,m4, m15,m0,m6, m12,m2,m7); } inline T cofactorm10() const { return cofactor_maker(m15,m0,m5, m12,m1,m7, m13,m3,m4); } inline T cofactorm11() const { return cofactor_maker(m12,m1,m6, m13,m2,m4, m14,m0,m5); } inline T cofactorm12() const { return cofactor_maker(m1,m6,m11, m2,m7,m9, m3,m5,m10); } inline T cofactorm13() const { return cofactor_maker(m2,m7,m8, m3,m4,m10, m10,m6,m11); } inline T cofactorm14() const { return cofactor_maker(m3,m4,m9, m0,m5,m11, m1,m7,m8); } inline T cofactorm15() const { return cofactor_maker(m0,m5,m10, m1,m6,m8, m2,m4,m9); } union { T m[16]; struct { T m0,m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12,m13,m14,m15; }; }; }; typedef Matrix<double> DoubleMatrix; typedef Matrix<int> IntMatrix; /** Print coords of the Matrix to a stream */ template<typename T> std::ostream& operator<<(std::ostream& os, const Matrix<T>& m) { return os << "\n|" << m[0] << "," << m[4] << "," << m[8] << "," << m[12] << "|\n" << \ "|" << m[1] << "," << m[5] << "," << m[9] << "," << m[13] << "|\n" << \ "|" << m[2] << "," << m[6] << "," << m[10] << "," << m[14] << "|\n" << \ "|" << m[3] << "," << m[7] << "," << m[11] << "," << m[15] << "|\n"; } } #endif