view engine/python/fife/extensions/fife_math.py @ 505:ee65aa323457

Updated the ApplicationBase settings to use the new and improved fife_setting extension. I was able to remove all the setting related functions from the demos and editor so that the ApplicationBase now takes care of all the FIFE related settings.
author prock@33b003aa-7bff-0310-803a-e67f0ece8222
date Tue, 18 May 2010 19:37:31 +0000
parents ae9f5383f5b1
children c0c3f64bfc2d
line wrap: on
line source

# -*- coding: utf-8 -*-

# ####################################################################
#  Copyright (C) 2005-2010 by the FIFE team
#  http://www.fifengine.net
#  This file is part of FIFE.
#
#  FIFE is free software; you can redistribute it and/or
#  modify it under the terms of the GNU Lesser General Public
#  License as published by the Free Software Foundation; either
#  version 2.1 of the License, or (at your option) any later version.
#
#  This library is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
#  Lesser General Public License for more details.
#
#  You should have received a copy of the GNU Lesser General Public
#  License along with this library; if not, write to the
#  Free Software Foundation, Inc.,
#  51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
# ####################################################################

"""
Math Library
==================================

This is a collection of useful 2D math functions/classes.
"""

from fife import fife
import math

def normalize(vector):
	"""
	Helper function to normalize a 2D vector
	
	@param vector: a L{fife.DoublePoint} to be normalized
	@type vector: L{fife.DoublePoint}
	
	@return: A normalized L{fife.DoublePoint}
	"""
	norm = fife.DoublePoint(0,0) 
		
	invLength = 1.0/vector.length()
	if invLength > 1e-06:
		norm.x = vector.x * invLength;
		norm.y = vector.y * invLength;
	else:
		norm.x = 0
		norm.y = 0
	
	return norm
	
class Rect(object):
	"""
	A simple rectangle class that allows floating point values.
	
	A class used to specify the bounding box of objects.  For use
	with collision detection.  This was written in python because
	FIFE does not provide a Rect class that can use floating point
	values.
	"""
	def __init__(self, x = 0, y = 0, w = 0, h = 0):
		"""
		@param x: The x coordinate
		@type x: C{int} or C{float}
		@param y: The y coordinate
		@type y: C{int} or C{float}
		@param w: The width
		@type w: C{int} or C{float}
		@param h: The height
		@type h: C{int} or C{float}
		"""
		self._x = x
		self._y = y
		self._w = w
		self._h = h
		
	def intersects(self, rect):
		"""
		Tests for intersection of rect.
		
		@param rect: the L{Rect} to perform the test against.
		@type rect: L{Rect}
		
		@return: True if the rectancles intersect, False if not.
		@rtype: C{boolean}
		"""
		_x = self._x - rect.x;
		_y = self._y - rect.y;
		_w = self._w;
		_h = self._h;

		if _x < 0:
			_w += _x
			_x = 0

		if _y < 0:
			_h += _y
			_y = 0

		if _x + _w > rect.w:
			_w = rect.w - _x

		if _y + _h > rect.h:
			_h = rect.h - _y
			
		if _w <= 0 or _h <= 0:
			return False

		return True

	def _setX(self, x):
		self._x = x
		
	def _getX(self):
		return self._x

	def _setY(self, y):
		self._y = y
		
	def _getY(self):
		return self._y
		
	def _setW(self, w):
		self._w = w
		
	def _getW(self):
		return self._w
		
	def _setH(self, h):
		self._h = h
		
	def _getH(self):
		return self._h
		
	x = property(_getX, _setX)
	y = property(_getY, _setY)
	w = property(_getW, _setW)
	h = property(_getH, _setH)
	
def rotatePoint(origin, point, angle):
	"""
	Rotates a point around the specified origin.
	
	@param origin: A point specifying the origin.
	@type origin: L{fife.DoublePoint}
	@param point: The point to be rotated.
	@type point: L{fife.DoublePoint}
	@param angle: The angle in which to rotate the point.
	@type angle: C{int} or C{float}
	
	@return: The rotated point.
	@rtype: L{fife.DoublePoint}
	"""
	newp = fife.DoublePoint(0,0)
	
	theta = (angle * math.pi)/180
	
	costheta = math.cos(theta)
	sintheta = math.sin(theta)
	
	x = point.x - origin.x
	y = point.y - origin.y
	
	newp.x = costheta * x - sintheta * y
	newp.y = sintheta * x + costheta * y
	
	return newp

__all__ = ['normalize','Rect','rotatePoint']