view engine/python/fife/extensions/fife_math.py @ 547:e59ece21ab3e

Item serialization will now assume some default values if they are not found in the save files. The 'spawn' console command can now spawn items with default values. Cleaned up some print statements.
author prock@33b003aa-7bff-0310-803a-e67f0ece8222
date Fri, 04 Jun 2010 21:01:34 +0000
parents ae9f5383f5b1
children c0c3f64bfc2d
line wrap: on
line source

# -*- coding: utf-8 -*-

# ####################################################################
#  Copyright (C) 2005-2010 by the FIFE team
#  http://www.fifengine.net
#  This file is part of FIFE.
#
#  FIFE is free software; you can redistribute it and/or
#  modify it under the terms of the GNU Lesser General Public
#  License as published by the Free Software Foundation; either
#  version 2.1 of the License, or (at your option) any later version.
#
#  This library is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
#  Lesser General Public License for more details.
#
#  You should have received a copy of the GNU Lesser General Public
#  License along with this library; if not, write to the
#  Free Software Foundation, Inc.,
#  51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
# ####################################################################

"""
Math Library
==================================

This is a collection of useful 2D math functions/classes.
"""

from fife import fife
import math

def normalize(vector):
	"""
	Helper function to normalize a 2D vector
	
	@param vector: a L{fife.DoublePoint} to be normalized
	@type vector: L{fife.DoublePoint}
	
	@return: A normalized L{fife.DoublePoint}
	"""
	norm = fife.DoublePoint(0,0) 
		
	invLength = 1.0/vector.length()
	if invLength > 1e-06:
		norm.x = vector.x * invLength;
		norm.y = vector.y * invLength;
	else:
		norm.x = 0
		norm.y = 0
	
	return norm
	
class Rect(object):
	"""
	A simple rectangle class that allows floating point values.
	
	A class used to specify the bounding box of objects.  For use
	with collision detection.  This was written in python because
	FIFE does not provide a Rect class that can use floating point
	values.
	"""
	def __init__(self, x = 0, y = 0, w = 0, h = 0):
		"""
		@param x: The x coordinate
		@type x: C{int} or C{float}
		@param y: The y coordinate
		@type y: C{int} or C{float}
		@param w: The width
		@type w: C{int} or C{float}
		@param h: The height
		@type h: C{int} or C{float}
		"""
		self._x = x
		self._y = y
		self._w = w
		self._h = h
		
	def intersects(self, rect):
		"""
		Tests for intersection of rect.
		
		@param rect: the L{Rect} to perform the test against.
		@type rect: L{Rect}
		
		@return: True if the rectancles intersect, False if not.
		@rtype: C{boolean}
		"""
		_x = self._x - rect.x;
		_y = self._y - rect.y;
		_w = self._w;
		_h = self._h;

		if _x < 0:
			_w += _x
			_x = 0

		if _y < 0:
			_h += _y
			_y = 0

		if _x + _w > rect.w:
			_w = rect.w - _x

		if _y + _h > rect.h:
			_h = rect.h - _y
			
		if _w <= 0 or _h <= 0:
			return False

		return True

	def _setX(self, x):
		self._x = x
		
	def _getX(self):
		return self._x

	def _setY(self, y):
		self._y = y
		
	def _getY(self):
		return self._y
		
	def _setW(self, w):
		self._w = w
		
	def _getW(self):
		return self._w
		
	def _setH(self, h):
		self._h = h
		
	def _getH(self):
		return self._h
		
	x = property(_getX, _setX)
	y = property(_getY, _setY)
	w = property(_getW, _setW)
	h = property(_getH, _setH)
	
def rotatePoint(origin, point, angle):
	"""
	Rotates a point around the specified origin.
	
	@param origin: A point specifying the origin.
	@type origin: L{fife.DoublePoint}
	@param point: The point to be rotated.
	@type point: L{fife.DoublePoint}
	@param angle: The angle in which to rotate the point.
	@type angle: C{int} or C{float}
	
	@return: The rotated point.
	@rtype: L{fife.DoublePoint}
	"""
	newp = fife.DoublePoint(0,0)
	
	theta = (angle * math.pi)/180
	
	costheta = math.cos(theta)
	sintheta = math.sin(theta)
	
	x = point.x - origin.x
	y = point.y - origin.y
	
	newp.x = costheta * x - sintheta * y
	newp.y = sintheta * x + costheta * y
	
	return newp

__all__ = ['normalize','Rect','rotatePoint']