Mercurial > fife-parpg
view engine/core/util/structures/quadtree.h @ 495:ae9f5383f5b1
Added a new log module called Script. This should be used by the python modules.
Did some code cleanup and comment cleanup.
Added some more visible log modules to the shooter demo for fun.
author | prock@33b003aa-7bff-0310-803a-e67f0ece8222 |
---|---|
date | Tue, 11 May 2010 21:30:55 +0000 |
parents | 90005975cdbb |
children |
line wrap: on
line source
/*************************************************************************** * Copyright (C) 2005-2008 by the FIFE team * * http://www.fifengine.de * * This file is part of FIFE. * * * * FIFE is free software; you can redistribute it and/or * * modify it under the terms of the GNU Lesser General Public * * License as published by the Free Software Foundation; either * * version 2.1 of the License, or (at your option) any later version. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * * Lesser General Public License for more details. * * * * You should have received a copy of the GNU Lesser General Public * * License along with this library; if not, write to the * * Free Software Foundation, Inc., * * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * ***************************************************************************/ #ifndef FIFE_UTIL_QUADTREE_H #define FIFE_UTIL_QUADTREE_H // Standard C++ library includes #include <cassert> // 3rd party library includes // FIFE includes // These includes are split up in two parts, separated by one empty line // First block: files included from the FIFE root src directory // Second block: files included from the same folder #include "rect.h" namespace FIFE { /** QuadTree Node */ template<typename DataType, int MinimumSize = 128> class QuadNode { protected: QuadNode *m_parent; QuadNode *m_nodes[4]; int m_x,m_y,m_size; DataType m_data; public: /** Create a new QuadNode * @param parent The parent QuadNode this node is contained in or null. * @param x The X position of this QuadNode. * @param y The Y position of this QuadNode. * @param size The width and height of this QuadNode. */ QuadNode(QuadNode* parent, int x, int y, int size) : m_parent(parent),m_x(x),m_y(y),m_size(size),m_data() { m_nodes[0] = m_nodes[1] = m_nodes[2] = m_nodes[3] = 0L; } ~QuadNode() { delete m_nodes[0]; delete m_nodes[1]; delete m_nodes[2]; delete m_nodes[3]; } /** Find a container node for a given rectangle. * This guarantees to return a Node with the following * properties: * 1.) The node contains the rectangle (as defined by the contains * function). 2.) All subnodes can not contain the rectangle or it has the MinimumSize. * 3.) In case these properties can only be fulfilled by extending the tree upwards, * that is by creating a new root node - this function will return null. * * This function will extend the tree automatically so that this guarantee * can be fulfilled. */ QuadNode* find_container(int x, int y, int w, int h); QuadNode* find_container(const Rect& rect) { return find_container(rect.x,rect.y,rect.w,rect.h); } /** Apply a visitor recursively to the QuadTree * A visitor is an object which has a @c visit method which * takes as parameters a pointer to a @c QuadNode and an integer. * The integer is the depth of the given node. * If the method returns @c true it is applied recursivly to all * existing subnodes with a depth increased by one. * The application happens in Z order (top left, top right, bottom * left and finally bottom right). */ template<typename Visitor> void apply_visitor(Visitor& visitor, int d = 0) { if( !visitor.visit(this, d) ) return; if( m_nodes[0] ) m_nodes[0]->apply_visitor(visitor, d + 1); if( m_nodes[1] ) m_nodes[1]->apply_visitor(visitor, d + 1); if( m_nodes[2] ) m_nodes[2]->apply_visitor(visitor, d + 1); if( m_nodes[3] ) m_nodes[3]->apply_visitor(visitor, d + 1); } /** Return the X position of the node. */ int x() const { return m_x; }; /** Return the Y position of the node. */ int y() const { return m_y; }; /** Return the size (width and height) of the node. */ int size() const { return m_size; }; /** Return a reference to the data of the node. */ DataType& data() { return m_data; }; /** Check whether a rectangle is contained in the node. * A rectangle is contained in a node, iff: * @code * x >= x() and x + w < x() + size() and y >= y() and y + h < y() + size() * @endcode * That is the top and left borders are inclusive, but the right and bottom * borders are exclusive. */ bool contains(int x, int y, int w, int h) const; /// Expand the subnodes - only needed for debugging/profiling worst cases. void splice(); /** Return the parent node */ QuadNode* parent() { return m_parent; }; /** Create a new parent node for a rectangle * This will create a new parent node end expand the tree so that * the given rectangle will eventually be contained after enough calls * of this function. */ QuadNode* create_parent(int x, int y, int w, int h); protected: int subnode(int x, int y, int w, int h) const; }; /** Dynamic QuadTree * A space partitioning tree automatically expanding to adjust * to any object size put into the data structure. */ template<typename DataType, int MinimumSize = 128> class QuadTree { public: typedef QuadNode<DataType,MinimumSize> Node; /** Create a new QuadTree * @param x The X position of the starting node. * @param y The Y position of the starting node. * @param starting_size The width and height of the starting node. */ QuadTree(int x = 0, int y = 0, int starting_size = MinimumSize) { assert(starting_size>1); m_cursor = m_root = new Node(0L,x,y,starting_size); } ~QuadTree() { assert( m_root->parent() == 0 ); delete m_root; } /** Find a container node for a given rectangle. * This guarantees to return a Node with the following * properties: * 1.) The node contains the rectangle (as defined by the contains * function). 2.) All subnodes can not contain the rectangle or it has the MinimumSize. * This function will extend the tree automatically so that this guarantee * can be fulfilled. * This function is optimized for sequential access. This means accessing different rectangles * that are 'near' to each other will be fast. * @warning If you put different sized objects in (for example) lists in the quadnode, * the returned node will @b not contain all objects which might intersect with the given * rectangle. */ Node* find_container(int x, int y, int w, int h); Node* find_container(const Rect& rect) { return find_container(rect.x,rect.y,rect.w,rect.h); } /** Apply a visitor recursively to the QuadTree */ template<typename Visitor> Visitor& apply_visitor(Visitor& visitor) { m_root->apply_visitor(visitor,0); return visitor; } void clear() { int x = m_root->x(); int y = m_root->y(); int s = m_root->size(); delete m_root; m_cursor = m_root = new Node(0L,x,y,s); } protected: Node *m_root; Node *m_cursor; }; template<typename DataType, int MinimumSize> inline bool QuadNode<DataType,MinimumSize>::contains(int x, int y, int w, int h) const { if (x < m_x) return false; if (y < m_y) return false; if (x + w >= m_x + m_size) return false; if (y + h >= m_y + m_size) return false; return true; } template<typename DataType, int MinimumSize> inline int QuadNode<DataType,MinimumSize>::subnode(int x, int y, int w, int h) const { /* Very small performance impact - roughly 5% for the already very fast find_container function. */ //assert(contains(x,y,w,h)); if (x >= m_x + m_size/2) { if (y >= m_y + m_size/2) { return 3; } if (y + h < m_y + m_size/2) { return 1; } return -1; } if (x + w < m_x + m_size/2) { if (y >= m_y + m_size/2) { return 2; } if (y + h < m_y + m_size/2) { return 0; } } return -1; } template<typename DataType,int MinimumSize> QuadNode<DataType,MinimumSize>* QuadNode<DataType,MinimumSize>::find_container(int x, int y, int w, int h) { if( !contains(x,y,w,h) ) { if (m_parent) { return m_parent->find_container(x,y,w,h); } return 0L; } if (m_size <= MinimumSize) { return this; } int r = subnode(x,y,w,h); switch(r) { case -1: return this; case 0: if( m_nodes[0] == 0) { m_nodes[0] = new QuadNode<DataType,MinimumSize>(this,m_x,m_y,m_size/2); } return m_nodes[0]->find_container(x,y,w,h); case 1: if( m_nodes[1] == 0) { m_nodes[1] = new QuadNode<DataType,MinimumSize>(this,m_x + m_size/2,m_y,m_size/2); } return m_nodes[1]->find_container(x,y,w,h); case 2: if( m_nodes[2] == 0) { m_nodes[2] = new QuadNode<DataType,MinimumSize>(this,m_x,m_y + m_size/2,m_size/2); } return m_nodes[2]->find_container(x,y,w,h); case 3: if( m_nodes[3] == 0) { m_nodes[3] = new QuadNode<DataType,MinimumSize>(this,m_x + m_size/2,m_y + m_size/2,m_size/2); } return m_nodes[3]->find_container(x,y,w,h); default: assert("BUG in QuadTree !" == 0); return 0L; } } template<typename DataType,int MinimumSize> QuadNode<DataType,MinimumSize>* QuadNode<DataType,MinimumSize>::create_parent(int x, int y, int w, int h) { /* If used only by the tree, these two are superfluous. */ if( contains(x,y,w,h) ) return this; if( m_parent ) return m_parent; if (x >= m_x) { if (y >= m_y) { // we are node 0 m_parent = new QuadNode(0L,m_x,m_y,m_size*2); m_parent->m_nodes[0] = this; return m_parent; } if (y + w < m_y + m_size) { // we are node 2 m_parent = new QuadNode(0L,m_x,m_y - m_size,m_size*2); m_parent->m_nodes[2] = this; return m_parent; } } if (x + h < m_x + m_size) { if (y >= m_y) { // we are node 1 m_parent = new QuadNode(0L,m_x-m_size,m_y,m_size*2); m_parent->m_nodes[1] = this; return m_parent; } if (y + w < m_y + m_size) { // we are node 3 m_parent = new QuadNode(0L,m_x-m_size,m_y - m_size,m_size*2); m_parent->m_nodes[3] = this; return m_parent; } } // It does not matter.... m_parent = new QuadNode(0L,m_x,m_y,m_size*2); m_parent->m_nodes[0] = this; return m_parent; } template<typename DataType,int MinimumSize> void QuadNode<DataType,MinimumSize>::splice() { if (m_size <= MinimumSize) return; if( m_nodes[0] == 0) { m_nodes[0] = new QuadNode<DataType,MinimumSize>(this,m_x,m_y,m_size/2); } if( m_nodes[1] == 0) { m_nodes[1] = new QuadNode<DataType,MinimumSize>(this,m_x + m_size/2,m_y,m_size/2); } if( m_nodes[2] == 0) { m_nodes[2] = new QuadNode<DataType,MinimumSize>(this,m_x,m_y + m_size/2,m_size/2); } if( m_nodes[3] == 0) { m_nodes[3] = new QuadNode<DataType,MinimumSize>(this,m_x + m_size/2,m_y + m_size/2,m_size/2); } } template<typename DataType,int MinimumSize> QuadNode<DataType,MinimumSize>* QuadTree<DataType,MinimumSize>::find_container(int x, int y, int w, int h) { m_cursor = m_cursor->find_container(x,y,w,h); while( m_cursor == 0L ) { m_root = m_root->create_parent(x,y,w,h); m_cursor = m_root->find_container(x,y,w,h); } return m_cursor; } } #endif // QUADTREE_H