view engine/core/util/math/matrix.h @ 77:824e12dc9dfc

Added newly modelled Red Deckchair, and source for it.
author kaelisebonrai@33b003aa-7bff-0310-803a-e67f0ece8222
date Fri, 18 Jul 2008 09:16:57 +0000
parents 9ec572a5a944
children 16c2b3ee59ce
line wrap: on
line source

/***************************************************************************
 *   Copyright (C) 2005-2008 by the FIFE team                              *
 *   http://www.fifengine.de                                               *
 *   This file is part of FIFE.                                            *
 *                                                                         *
 *   FIFE is free software; you can redistribute it and/or                 *
 *   modify it under the terms of the GNU Lesser General Public            *
 *   License as published by the Free Software Foundation; either          *
 *   version 2.1 of the License, or (at your option) any later version.    *
 *                                                                         *
 *   This library is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *   Lesser General Public License for more details.                       *
 *                                                                         *
 *   You should have received a copy of the GNU Lesser General Public      *
 *   License along with this library; if not, write to the                 *
 *   Free Software Foundation, Inc.,                                       *
 *   51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA          *
 ***************************************************************************/
/***************************************************************************
 * Includes some heavy copying from mathgl-pp project                      *
 * (http://sourceforge.net/projects/mathgl-pp/)                            *
 ***************************************************************************/

#ifndef FIFE_UTIL_MATRIX_H
#define FIFE_UTIL_MATRIX_H

// Standard C++ library includes
#include <cassert>
#include <iostream>

// Platform specific includes

// 3rd party library includes

// FIFE includes
// These includes are split up in two parts, separated by one empty line
// First block: files included from the FIFE root src directory
// Second block: files included from the same folder
#include "util/base/fife_stdint.h"
#include "util/structures/point.h"

#include "fife_math.h"

namespace FIFE {


	/** Minimal matrix class to assist in view 3d calculations
	 */
	template <typename T>
	class Matrix {
		public:
			Matrix<T>() {}
			template <typename U> friend class Matrix;
			template <typename U> Matrix<T>(const Matrix<U>& mat) {
				memmove(m, mat.m, 16*sizeof(T));
			}
			~Matrix() {}

			/** Adjoint method inverse, constant time inversion implementation
			 */
			Matrix inverse() const {
				Matrix ret(adjoint());

				T determinant = m0*ret[0] + m1*ret[4] + m2*ret[8] + m3*ret[12];
				assert(determinant!=0 && "Singular matrix has no inverse");

				ret/=determinant;
				return ret;
			}

			/** Divide this matrix by a scalar
			 */
			inline Matrix& operator/= (T val) {
				for (register unsigned i = 0; i < 16; ++i)
					m[i] /= val;
				return *this;
			}

			/** Get the adjoint matrix
			 */
			Matrix adjoint() const {
				Matrix ret;

				ret[0] = cofactorm0();
				ret[1] = -cofactorm4();
				ret[2] = cofactorm8();
				ret[3] = -cofactorm12();

				ret[4] = -cofactorm1();
				ret[5] = cofactorm5();
				ret[6] = -cofactorm9();
				ret[7] = cofactorm13();

				ret[8] = cofactorm2();
				ret[9] = -cofactorm6();
				ret[10] = cofactorm10();
				ret[11] = -cofactorm14();

				ret[12] = -cofactorm3();
				ret[13] = cofactorm7();
				ret[14] = -cofactorm11();
				ret[15] = cofactorm15();

				return ret;
			}


			/** Make this a rotation matrix
			 */

			inline Matrix& loadRotate(T angle, T x, T y, T z) {
				register T magSqr = x*x + y*y + z*z;
				if (magSqr != 1.0) {
					register T mag = sqrt(magSqr);
					x/=mag;
					y/=mag;
					z/=mag;
				}
				T c = cos(angle*M_PI/180);
				T s = sin(angle*M_PI/180);
				m0 = x*x*(1-c)+c;
				m1 = y*x*(1-c)+z*s;
				m2 = z*x*(1-c)-y*s;
				m3 = 0;

				m4 = x*y*(1-c)-z*s;
				m5 = y*y*(1-c)+c;
				m6 = z*y*(1-c)+x*s;
				m7 = 0;

				m8 = x*z*(1-c)+y*s;
				m9 = y*z*(1-c)-x*s;
				m10 = z*z*(1-c)+c;
				m11 = 0;

				m12 = 0;
				m13 = 0;
				m14 = 0;
				m15 = 1;

				return *this;
			}

			/** Apply scale into this matrix
			 */
			inline Matrix& applyScale(T x, T y, T z) {
				static Matrix<T> temp;
				temp.loadScale(x,y,z);
				*this = temp.mult4by4(*this);
				return  *this;
			}

			/** Make this a scale matrix
			 */
			inline Matrix& loadScale(T x, T y, T z = 1) {
				m0 = x;
				m4 = 0;
				m8  = 0;
				m12 = 0;
				m1 = 0;
				m5 = y;
				m9  = 0;
				m13 = 0;
				m2 = 0;
				m6 = 0;
				m10 = z;
				m14 = 0;
				m3 = 0;
				m7 = 0;
				m11 = 0;
				m15 = 1;

				return *this;
			}

			/** Apply translation into this matrix
			 */
			inline Matrix& applyTranslate(T x, T y, T z) {
				static Matrix<T> temp;
				temp.loadTranslate(x,y,z);
				*this = temp.mult4by4(*this);
				return  *this;
			}

			/** Make this a translation matrix
			 */
			inline Matrix& loadTranslate( const T x, const T y, const T z) {
				m0 = 1;
				m4 = 0;
				m8  = 0;
				m12 = x;
				m1 = 0;
				m5 = 1;
				m9  = 0;
				m13 = y;
				m2 = 0;
				m6 = 0;
				m10 = 1;
				m14 = z;
				m3 = 0;
				m7 = 0;
				m11 = 0;
				m15 = 1;

				return *this;
			}

			/** Transform given point using this matrix
			 */
			inline PointType3D<T> operator* (const PointType3D<T>& vec) {
				return PointType3D<T> (
					vec.x * m0 + vec.y * m4 + vec.z * m8 + m12,
					vec.x * m1 + vec.y * m5 + vec.z * m9 + m13,
					vec.x * m2 + vec.y * m6 + vec.z * m10 + m14
				);
			}

			/** Direct access to the matrix elements, just remember they are in column major format!!
			 */
			inline T& operator[] (int ind) {
				assert(ind > -1 && ind < 16);
				return m[ind];
			}

			/** Apply the matrix dot product to this matrix
			 */
			inline Matrix& mult3by3(const Matrix& mat) {
				Matrix temp(*this);
				m0 = temp.m0*mat.m0+temp.m4*mat.m1+temp.m8*mat.m2;
				m4 = temp.m0*mat.m4+temp.m4*mat.m5+temp.m8*mat.m6;
				m8 = temp.m0*mat.m8+temp.m4*mat.m9+temp.m8*mat.m10;

				m1 = temp.m1*mat.m0+temp.m5*mat.m1+temp.m9*mat.m2;
				m5 = temp.m1*mat.m4+temp.m5*mat.m5+temp.m9*mat.m6;
				m9 = temp.m1*mat.m8+temp.m5*mat.m9+temp.m9*mat.m10;

				m2 = temp.m2*mat.m0+temp.m6*mat.m1+temp.m10*mat.m2;
				m6 = temp.m2*mat.m4+temp.m6*mat.m5+temp.m10*mat.m6;
				m10 = temp.m2*mat.m8+temp.m6*mat.m9+temp.m10*mat.m10;

				m3 = temp.m3*mat.m0+temp.m7*mat.m1+temp.m11*mat.m2;
				m7 = temp.m3*mat.m4+temp.m7*mat.m5+temp.m11*mat.m6;
				m11 = temp.m3*mat.m8+temp.m7*mat.m9+temp.m11*mat.m10;
				return *this;
			}

			/** this->Rmult4by4(temp) == [temp] X [*this] **/
			/** also equal to temp->mult4by4(*this) **/
			inline Matrix<T>& Rmult4by4(const Matrix<T>& mat) {
				Matrix temp(*this);

				m0 = mat.m0*temp.m0+mat.m4*temp.m1+mat.m8*temp.m2+mat.m12*temp.m3;
				m4 = mat.m0*temp.m4+mat.m4*temp.m5+mat.m8*temp.m6+mat.m12*temp.m7;
				m8 = mat.m0*temp.m8+mat.m4*temp.m9+mat.m8*temp.m10+mat.m12*temp.m11;
				m12 = mat.m0*temp.m12+mat.m4*temp.m13+mat.m8*temp.m14+mat.m12*temp.m15;

				m1 =  mat.m1*temp.m0 + mat.m5*temp.m1  + mat.m9*temp.m2+mat.m13*temp.m3;
				m5 =  mat.m1*temp.m4 + mat.m5*temp.m5  + mat.m9*temp.m6+mat.m13*temp.m7;
				m9 =  mat.m1*temp.m8 + mat.m5*temp.m9  + mat.m9*temp.m10+mat.m13*temp.m11;
				m13 = mat.m1*temp.m12+ mat.m5*temp.m13 + mat.m9*temp.m14+mat.m13*temp.m15;

				m2 = mat.m2*temp.m0+mat.m6*temp.m1+mat.m10*temp.m2+mat.m14*temp.m3;
				m6 = mat.m2*temp.m4+mat.m6*temp.m5+mat.m10*temp.m6+mat.m14*temp.m7;
				m10 = mat.m2*temp.m8+mat.m6*temp.m9+mat.m10*temp.m10+mat.m14*temp.m11;
				m14 = mat.m2*temp.m12+mat.m6*temp.m13+mat.m10*temp.m14+mat.m14*temp.m15;

				m3 = mat.m3*temp.m0+mat.m7*temp.m1+mat.m11*temp.m2+mat.m15*temp.m3;
				m7 = mat.m3*temp.m4+mat.m7*temp.m5+mat.m11*temp.m6+mat.m15*temp.m7;
				m11 = mat.m3*temp.m8+mat.m7*temp.m9+mat.m11*temp.m10+mat.m15*temp.m11;
				m15 = mat.m3*temp.m12+mat.m7*temp.m13+mat.m11*temp.m14+mat.m15*temp.m15;
				return *this;
			}


			inline Matrix<T>& mult4by4(const Matrix<T>& mat) {
				Matrix temp(*this);

				m0 = temp.m0*mat.m0+temp.m4*mat.m1+temp.m8*mat.m2+temp.m12*mat.m3;
				m4 = temp.m0*mat.m4+temp.m4*mat.m5+temp.m8*mat.m6+temp.m12*mat.m7;
				m8 = temp.m0*mat.m8+temp.m4*mat.m9+temp.m8*mat.m10+temp.m12*mat.m11;
				m12 = temp.m0*mat.m12+temp.m4*mat.m13+temp.m8*mat.m14+temp.m12*mat.m15;

				m1 =  temp.m1*mat.m0 + temp.m5*mat.m1  + temp.m9*mat.m2+temp.m13*mat.m3;
				m5 =  temp.m1*mat.m4 + temp.m5*mat.m5  + temp.m9*mat.m6+temp.m13*mat.m7;
				m9 =  temp.m1*mat.m8 + temp.m5*mat.m9  + temp.m9*mat.m10+temp.m13*mat.m11;
				m13 = temp.m1*mat.m12+ temp.m5*mat.m13 + temp.m9*mat.m14+temp.m13*mat.m15;

				m2 = temp.m2*mat.m0+temp.m6*mat.m1+temp.m10*mat.m2+temp.m14*mat.m3;
				m6 = temp.m2*mat.m4+temp.m6*mat.m5+temp.m10*mat.m6+temp.m14*mat.m7;
				m10 = temp.m2*mat.m8+temp.m6*mat.m9+temp.m10*mat.m10+temp.m14*mat.m11;
				m14 = temp.m2*mat.m12+temp.m6*mat.m13+temp.m10*mat.m14+temp.m14*mat.m15;

				m3 = temp.m3*mat.m0+temp.m7*mat.m1+temp.m11*mat.m2+temp.m15*mat.m3;
				m7 = temp.m3*mat.m4+temp.m7*mat.m5+temp.m11*mat.m6+temp.m15*mat.m7;
				m11 = temp.m3*mat.m8+temp.m7*mat.m9+temp.m11*mat.m10+temp.m15*mat.m11;
				m15 = temp.m3*mat.m12+temp.m7*mat.m13+temp.m11*mat.m14+temp.m15*mat.m15;
				return *this;
			}

			Matrix& applyRotate(T angle, T x, T y, T z) {
				static Matrix<T> temp;
				temp.loadRotate(angle,x,y,z);
				*this = temp.mult4by4(*this);
				return  *this;
			}


		private:
#define cofactor_maker(f1,mj1,mi1, f2,mj2,mi2, f3,mj3,mi3) \
		f1*(mj1*mi1-mj2*mi3) + f2*(mj2*mi2-mj3*mi1) + f3*(mj3*mi3-mj1*mi2)

			inline T cofactorm0() const {
				return cofactor_maker(m5,m10,m15, m6,m11,m13, m7,m9,m14);
			}
			inline T cofactorm1() const {
				return cofactor_maker(m6,m11,m12, m7,m8,m14, m4,m10,m15);
			}
			inline T cofactorm2() const {
				return cofactor_maker(m7,m8,m13, m4,m9,m15, m5,m11,m12);
			}
			inline T cofactorm3() const {
				return cofactor_maker(m4,m9,m14, m5,m10,m12, m6,m8,m13);
			}
			inline T cofactorm4() const {
				return cofactor_maker(m9,m14,m3, m10,m15,m1, m11,m13,m2);
			}
			inline T cofactorm5() const {
				return cofactor_maker(m10,m15,m0, m11,m12,m2, m8,m14,m3);
			}
			inline T cofactorm6() const {
				return cofactor_maker(m11,m12,m1, m8,m13,m3, m9,m15,m0);
			}
			inline T cofactorm7() const {
				return cofactor_maker(m8,m13,m2, m9,m14,m0, m10,m12,m1);
			}
			inline T cofactorm8() const {
				return cofactor_maker(m13,m2,m7, m14,m3,m5, m15,m1,m6);
			}
			inline T cofactorm9() const {
				return cofactor_maker(m14,m13,m4, m15,m0,m6, m12,m2,m7);
			}
			inline T cofactorm10() const {
				return cofactor_maker(m15,m0,m5, m12,m1,m7, m13,m3,m4);
			}
			inline T cofactorm11() const {
				return cofactor_maker(m12,m1,m6, m13,m2,m4, m14,m0,m5);
			}
			inline T cofactorm12() const {
				return cofactor_maker(m1,m6,m11, m2,m7,m9, m3,m5,m10);
			}
			inline T cofactorm13() const {
				return cofactor_maker(m2,m7,m8, m3,m4,m10, m10,m6,m11);
			}
			inline T cofactorm14() const {
				return cofactor_maker(m3,m4,m9, m0,m5,m11, m1,m7,m8);
			}
			inline T cofactorm15() const {
				return cofactor_maker(m0,m5,m10, m1,m6,m8, m2,m4,m9);
			}

			union {
				T m[16];
				struct {
					T m0,m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12,m13,m14,m15;
				};
			};
	};

	typedef Matrix<double> DoubleMatrix;
	typedef Matrix<int> IntMatrix;

	/** Print coords of the Matrix to a stream
	 */
	template<typename T>
	std::ostream& operator<<(std::ostream& os, Matrix<T>& m) {
		return os << "\n|" << m[0] << "," << m[4] << "," << m[8] << ","  << m[12] << "|\n" << \
		               "|" << m[1] << "," << m[5] << "," << m[9] << ","  << m[13] << "|\n" << \
		               "|" << m[2] << "," << m[6] << "," << m[10] << "," << m[14] << "|\n" << \
		               "|" << m[3] << "," << m[7] << "," << m[11] << "," << m[15] << "|\n";
	}


}

#endif