view engine/python/fife/extensions/fife_math.py @ 639:685d250f2c2d

* Improvements for DeviceCaps. It now stores a list of valid SDL drivers. Currently in windows we are limited to the windows GDI (which is slow). This could mean that SDL users could benifit from hardware acceleration with directx (a valid SDL driver).
author prock@33b003aa-7bff-0310-803a-e67f0ece8222
date Thu, 07 Oct 2010 16:44:44 +0000
parents c0c3f64bfc2d
children
line wrap: on
line source

# -*- coding: utf-8 -*-

# ####################################################################
#  Copyright (C) 2005-2010 by the FIFE team
#  http://www.fifengine.net
#  This file is part of FIFE.
#
#  FIFE is free software; you can redistribute it and/or
#  modify it under the terms of the GNU Lesser General Public
#  License as published by the Free Software Foundation; either
#  version 2.1 of the License, or (at your option) any later version.
#
#  This library is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
#  Lesser General Public License for more details.
#
#  You should have received a copy of the GNU Lesser General Public
#  License along with this library; if not, write to the
#  Free Software Foundation, Inc.,
#  51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
# ####################################################################

"""
Math Library
==================================

This is a collection of useful 2D math functions/classes.
"""

from fife import fife
import math

def normalize(vector):
	"""
	Helper function to normalize a 2D vector
	
	@param vector: a L{fife.DoublePoint} to be normalized
	@type vector: L{fife.DoublePoint}
	
	@return: A normalized L{fife.DoublePoint}
	"""
	norm = fife.DoublePoint(0,0) 
		
	invLength = 1.0/vector.length()
	if invLength > 1e-06:
		norm.x = vector.x * invLength;
		norm.y = vector.y * invLength;
	else:
		norm.x = 0
		norm.y = 0
	
	return norm
	
def rotatePoint(origin, point, angle):
	"""
	Rotates a point around the specified origin.
	
	@param origin: A point specifying the origin.
	@type origin: L{fife.DoublePoint}
	@param point: The point to be rotated.
	@type point: L{fife.DoublePoint}
	@param angle: The angle in which to rotate the point.
	@type angle: C{int} or C{float}
	
	@return: The rotated point.
	@rtype: L{fife.DoublePoint}
	"""
	newp = fife.DoublePoint(0,0)
	
	theta = (angle * math.pi)/180
	
	costheta = math.cos(theta)
	sintheta = math.sin(theta)
	
	x = point.x - origin.x
	y = point.y - origin.y
	
	newp.x = costheta * x - sintheta * y
	newp.y = sintheta * x + costheta * y
	
	return newp

__all__ = ['normalize','rotatePoint']