Mercurial > fife-parpg
view engine/core/video/opengl/glimage.cpp @ 524:6037f79b0dcf
Multiple quests now work.
Added the item layer.
Made movement more like diablo by allowing you to hold and drag the left mouse button.
All objects are now loaded from a separate "allobjects" file. Specific item attributes are loaded from the map objects file (like position). This allows for the possibility of multiple instances using the same FIFE model.
author | prock@33b003aa-7bff-0310-803a-e67f0ece8222 |
---|---|
date | Thu, 27 May 2010 21:11:37 +0000 |
parents | ad1f09d954f9 |
children | 47b49b9b0c0a |
line wrap: on
line source
/*************************************************************************** * Copyright (C) 2005-2008 by the FIFE team * * http://www.fifengine.de * * This file is part of FIFE. * * * * FIFE is free software; you can redistribute it and/or * * modify it under the terms of the GNU Lesser General Public * * License as published by the Free Software Foundation; either * * version 2.1 of the License, or (at your option) any later version. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * * Lesser General Public License for more details. * * * * You should have received a copy of the GNU Lesser General Public * * License along with this library; if not, write to the * * Free Software Foundation, Inc., * * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * ***************************************************************************/ // Standard C++ library includes #include <cassert> // 3rd party library includes // FIFE includes // These includes are split up in two parts, separated by one empty line // First block: files included from the FIFE root src directory // Second block: files included from the same folder #include "util/structures/rect.h" #include "video/sdl/sdlimage.h" #include "video/renderbackend.h" #include "glimage.h" namespace FIFE { GLImage::GLImage(SDL_Surface* surface): Image(surface) { m_sdlimage = new SDLImage(surface); resetGlimage(); } GLImage::GLImage(const uint8_t* data, unsigned int width, unsigned int height): Image(data, width, height) { resetGlimage(); } GLImage::~GLImage() { // remove surface so that deletion happens correctly (by base class destructor) m_sdlimage->detachSurface(); delete m_sdlimage; cleanup(); } void GLImage::resetGlimage() { m_last_col_fill_ratio = 0; m_last_row_fill_ratio = 0; m_textureids = NULL; m_rows = 0; m_cols = 0; m_last_col_width = 0; m_last_row_height = 0; m_chunk_size = RenderBackend::instance()->getChunkingSize(); m_colorkey = RenderBackend::instance()->getColorKey(); } void GLImage::cleanup() { for (unsigned int i = 0; i < m_rows*m_cols; ++i) { glDeleteTextures(1, &m_textureids[i]); } delete[] m_textureids; m_textureids = NULL; resetGlimage(); } void GLImage::render(const Rect& rect, SDL_Surface* screen, unsigned char alpha) { if (!m_textureids) { generateTextureChunks(); } if (rect.right() < 0 || rect.x > static_cast<int>(screen->w) || rect.bottom() < 0 || rect.y > static_cast<int>(screen->h)) { return; } if (0 == alpha) { return; } // used to calculate the fill ratio for given chunk float col_fill_ratio; float row_fill_ratio; // the amount of "zooming" for the image float scale_x = static_cast<float>(rect.w) / static_cast<float>(m_surface->w); float scale_y = static_cast<float>(rect.h) / static_cast<float>(m_surface->h); // rectangle used for drawing Rect target; // zooming causes scaling sometimes to round pixels incorrectly. Instead of // recalculating it all, store the values from previous round and calculate // new x & y Rect prev; /// setting transparency for the whole primitive: glColor4ub( 255, 255, 255, alpha ); glEnable(GL_TEXTURE_2D); for (unsigned int i = 0; i < m_cols; ++i) { if (i == m_cols-1) { col_fill_ratio = m_last_col_fill_ratio; target.w = static_cast<int>(round(scale_y*m_last_col_width*m_last_col_fill_ratio)); } else { col_fill_ratio = 1.0; target.w = static_cast<int>(round(scale_y*m_chunk_size)); } if (i > 0) { target.x = prev.x + prev.w; } else { target.x = rect.x; } for (unsigned int j = 0; j < m_rows; ++j) { if (j == m_rows-1) { row_fill_ratio = m_last_row_fill_ratio; target.h = static_cast<int>(round(scale_y*m_last_row_height*m_last_row_fill_ratio)); } else { row_fill_ratio = 1.0; target.h = static_cast<int>(round(scale_y*m_chunk_size)); } if (j > 0) { target.y = prev.y + prev.h; } else { target.y = rect.y; } prev = target; glBindTexture(GL_TEXTURE_2D, m_textureids[j*m_cols + i]); glBegin(GL_QUADS); glTexCoord2f(0.0f, 0.0f); glVertex2i(target.x, target.y); glTexCoord2f(0.0f, row_fill_ratio); glVertex2i(target.x, target.y + target.h); glTexCoord2f(col_fill_ratio, row_fill_ratio); glVertex2i(target.x + target.w, target.y + target.h); glTexCoord2f(col_fill_ratio, 0.0f); glVertex2i(target.x + target.w, target.y); glEnd(); } } glDisable(GL_TEXTURE_2D); } void GLImage::generateTextureChunks() { const unsigned int width = m_surface->w; const unsigned int height = m_surface->h; uint8_t* data = static_cast<uint8_t*>(m_surface->pixels); int pitch = m_surface->pitch; m_last_col_width = 1; m_cols = static_cast<int>(width/m_chunk_size); if (width%m_chunk_size) { ++m_cols; while(m_last_col_width < width%m_chunk_size) { m_last_col_width <<= 1; } } else { m_last_col_width = m_chunk_size; } m_last_row_height = 1; m_rows = static_cast<int>(height/m_chunk_size); if (height%m_chunk_size) { ++m_rows; while(m_last_row_height < height%m_chunk_size) { m_last_row_height <<= 1; } } else { m_last_row_height = m_chunk_size; } m_textureids = new GLuint[m_rows*m_cols]; memset(m_textureids, 0x00, m_rows*m_cols*sizeof(GLuint)); if(width%m_chunk_size) { m_last_col_fill_ratio = static_cast<float>(width%m_chunk_size) / static_cast<float>(m_last_col_width); } else { // (width%m_chunk_size) / m_last_col_width == 0 == m_chunk_size (mod m_chunk_size) m_last_col_fill_ratio = 1.0f; } if (height%m_chunk_size) { m_last_row_fill_ratio = static_cast<float>(height%m_chunk_size) / static_cast<float>(m_last_row_height); } else { m_last_row_fill_ratio = 1.0f; } unsigned int chunk_width; unsigned int chunk_height; unsigned int data_chunk_height; unsigned int data_chunk_width; for (unsigned int i = 0; i < m_cols; ++i) { for (unsigned int j = 0; j < m_rows; ++j) { if (i==m_cols-1) { chunk_width = m_last_col_width; data_chunk_width = width%m_chunk_size; if(data_chunk_width == 0) { // 0 == m_chunk_size (mod m_chunk_size) data_chunk_width = m_chunk_size; } } else { chunk_width = m_chunk_size; data_chunk_width = m_chunk_size; } if (j==m_rows-1) { chunk_height = m_last_row_height; data_chunk_height = height%m_chunk_size; if(data_chunk_height == 0) { // 0 = m_chunk_size (mod m_chunk_size) data_chunk_height = m_chunk_size; } } else { chunk_height = m_chunk_size; data_chunk_height = m_chunk_size; } uint32_t* oglbuffer = new uint32_t[chunk_width * chunk_height]; memset(oglbuffer, 0x00, chunk_width*chunk_height*4); for (unsigned int y = 0; y < data_chunk_height; ++y) { for (unsigned int x = 0; x < data_chunk_width; ++x) { unsigned int pos = (y + j*m_chunk_size)*pitch + (x + i*m_chunk_size) * 4; uint8_t r = data[pos + 3]; uint8_t g = data[pos + 2]; uint8_t b = data[pos + 1]; uint8_t a = data[pos + 0]; if (RenderBackend::instance()->isColorKeyEnabled()) { // only set alpha to zero if colorkey feature is enabled if (r == m_colorkey.r && g == m_colorkey.g && b == m_colorkey.b) { a = 0; } } oglbuffer[(y*chunk_width) + x] = r | (g << 8) | (b << 16) | (a<<24); } } // get texture id from opengl glGenTextures(1, &m_textureids[j*m_cols + i]); // set focus on that texture glBindTexture(GL_TEXTURE_2D, m_textureids[j*m_cols + i]); // set filters for texture glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); // transfer data from sdl buffer glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, chunk_width, chunk_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, static_cast<GLvoid*>(oglbuffer)); delete[] oglbuffer; } } } void GLImage::saveImage(const std::string& filename) { const unsigned int swidth = getWidth(); const unsigned int sheight = getHeight(); Uint32 rmask, gmask, bmask, amask; SDL_Surface *surface = NULL; uint8_t *pixels; #if SDL_BYTEORDER == SDL_BIG_ENDIAN rmask = 0xff000000; gmask = 0x00ff0000; bmask = 0x0000ff00; amask = 0x000000ff; #else rmask = 0x000000ff; gmask = 0x0000ff00; bmask = 0x00ff0000; amask = 0xff000000; #endif surface = SDL_CreateRGBSurface(SDL_SWSURFACE, swidth, sheight, 24, rmask, gmask, bmask, 0); if(surface == NULL) { return; } SDL_LockSurface(surface); pixels = new uint8_t[swidth * sheight * 3]; glReadPixels(0, 0, swidth, sheight, GL_RGB, GL_UNSIGNED_BYTE, reinterpret_cast<GLvoid*>(pixels)); uint8_t *imagepixels = reinterpret_cast<uint8_t*>(surface->pixels); // Copy the "reversed_image" memory to the "image" memory for (int y = (sheight - 1); y >= 0; --y) { uint8_t *rowbegin = pixels + y * swidth * 3; uint8_t *rowend = rowbegin + swidth * 3; std::copy(rowbegin, rowend, imagepixels); // Advance a row in the output surface. imagepixels += surface->pitch; } SDL_UnlockSurface(surface); saveAsPng(filename, *surface); SDL_FreeSurface(surface); delete [] pixels; } void GLImage::setClipArea(const Rect& cliparea, bool clear) { glScissor(cliparea.x, getHeight() - cliparea.y - cliparea.h, cliparea.w, cliparea.h); if (clear) { glClear(GL_COLOR_BUFFER_BIT); } } bool GLImage::putPixel(int x, int y, int r, int g, int b) { cleanup(); return m_sdlimage->putPixel(x, y, r, g, b); } void GLImage::drawLine(const Point& p1, const Point& p2, int r, int g, int b) { cleanup(); m_sdlimage->drawLine(p1, p2, r, g, b); } void GLImage::drawQuad(const Point& p1, const Point& p2, const Point& p3, const Point& p4, int r, int g, int b) { cleanup(); m_sdlimage->drawQuad(p1, p2, p3, p4, r, g, b); } void GLImage::drawVertex(const Point& p, const uint8_t size, int r, int g, int b) { cleanup(); m_sdlimage->drawVertex(p, size, r, g, b); } }