Mercurial > fife-parpg
view ext/libpng-1.2.29/pngwutil.c @ 440:3a6441d9e01c
The demos and editor now look for a local copy of FIFE before trying to import the installed version of FIFE. This is to ease development and not force developers to install FIFE every time they make changes to core and/or the extensions. fixes[t:453]
author | prock@33b003aa-7bff-0310-803a-e67f0ece8222 |
---|---|
date | Tue, 02 Mar 2010 15:05:30 +0000 |
parents | 4a0efb7baf70 |
children |
line wrap: on
line source
/* pngwutil.c - utilities to write a PNG file * * Last changed in libpng 1.2.27 [April 29, 2008] * For conditions of distribution and use, see copyright notice in png.h * Copyright (c) 1998-2008 Glenn Randers-Pehrson * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) */ #define PNG_INTERNAL #include "png.h" #ifdef PNG_WRITE_SUPPORTED /* Place a 32-bit number into a buffer in PNG byte order. We work * with unsigned numbers for convenience, although one supported * ancillary chunk uses signed (two's complement) numbers. */ void PNGAPI png_save_uint_32(png_bytep buf, png_uint_32 i) { buf[0] = (png_byte)((i >> 24) & 0xff); buf[1] = (png_byte)((i >> 16) & 0xff); buf[2] = (png_byte)((i >> 8) & 0xff); buf[3] = (png_byte)(i & 0xff); } /* The png_save_int_32 function assumes integers are stored in two's * complement format. If this isn't the case, then this routine needs to * be modified to write data in two's complement format. */ void PNGAPI png_save_int_32(png_bytep buf, png_int_32 i) { buf[0] = (png_byte)((i >> 24) & 0xff); buf[1] = (png_byte)((i >> 16) & 0xff); buf[2] = (png_byte)((i >> 8) & 0xff); buf[3] = (png_byte)(i & 0xff); } /* Place a 16-bit number into a buffer in PNG byte order. * The parameter is declared unsigned int, not png_uint_16, * just to avoid potential problems on pre-ANSI C compilers. */ void PNGAPI png_save_uint_16(png_bytep buf, unsigned int i) { buf[0] = (png_byte)((i >> 8) & 0xff); buf[1] = (png_byte)(i & 0xff); } /* Write a PNG chunk all at once. The type is an array of ASCII characters * representing the chunk name. The array must be at least 4 bytes in * length, and does not need to be null terminated. To be safe, pass the * pre-defined chunk names here, and if you need a new one, define it * where the others are defined. The length is the length of the data. * All the data must be present. If that is not possible, use the * png_write_chunk_start(), png_write_chunk_data(), and png_write_chunk_end() * functions instead. */ void PNGAPI png_write_chunk(png_structp png_ptr, png_bytep chunk_name, png_bytep data, png_size_t length) { if(png_ptr == NULL) return; png_write_chunk_start(png_ptr, chunk_name, (png_uint_32)length); png_write_chunk_data(png_ptr, data, length); png_write_chunk_end(png_ptr); } /* Write the start of a PNG chunk. The type is the chunk type. * The total_length is the sum of the lengths of all the data you will be * passing in png_write_chunk_data(). */ void PNGAPI png_write_chunk_start(png_structp png_ptr, png_bytep chunk_name, png_uint_32 length) { png_byte buf[4]; png_debug2(0, "Writing %s chunk (%lu bytes)\n", chunk_name, length); if(png_ptr == NULL) return; /* write the length */ png_save_uint_32(buf, length); png_write_data(png_ptr, buf, (png_size_t)4); /* write the chunk name */ png_write_data(png_ptr, chunk_name, (png_size_t)4); /* reset the crc and run it over the chunk name */ png_reset_crc(png_ptr); png_calculate_crc(png_ptr, chunk_name, (png_size_t)4); } /* Write the data of a PNG chunk started with png_write_chunk_start(). * Note that multiple calls to this function are allowed, and that the * sum of the lengths from these calls *must* add up to the total_length * given to png_write_chunk_start(). */ void PNGAPI png_write_chunk_data(png_structp png_ptr, png_bytep data, png_size_t length) { /* write the data, and run the CRC over it */ if(png_ptr == NULL) return; if (data != NULL && length > 0) { png_calculate_crc(png_ptr, data, length); png_write_data(png_ptr, data, length); } } /* Finish a chunk started with png_write_chunk_start(). */ void PNGAPI png_write_chunk_end(png_structp png_ptr) { png_byte buf[4]; if(png_ptr == NULL) return; /* write the crc */ png_save_uint_32(buf, png_ptr->crc); png_write_data(png_ptr, buf, (png_size_t)4); } /* Simple function to write the signature. If we have already written * the magic bytes of the signature, or more likely, the PNG stream is * being embedded into another stream and doesn't need its own signature, * we should call png_set_sig_bytes() to tell libpng how many of the * bytes have already been written. */ void /* PRIVATE */ png_write_sig(png_structp png_ptr) { png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10}; /* write the rest of the 8 byte signature */ png_write_data(png_ptr, &png_signature[png_ptr->sig_bytes], (png_size_t)8 - png_ptr->sig_bytes); if(png_ptr->sig_bytes < 3) png_ptr->mode |= PNG_HAVE_PNG_SIGNATURE; } #if defined(PNG_WRITE_TEXT_SUPPORTED) || defined(PNG_WRITE_iCCP_SUPPORTED) /* * This pair of functions encapsulates the operation of (a) compressing a * text string, and (b) issuing it later as a series of chunk data writes. * The compression_state structure is shared context for these functions * set up by the caller in order to make the whole mess thread-safe. */ typedef struct { char *input; /* the uncompressed input data */ int input_len; /* its length */ int num_output_ptr; /* number of output pointers used */ int max_output_ptr; /* size of output_ptr */ png_charpp output_ptr; /* array of pointers to output */ } compression_state; /* compress given text into storage in the png_ptr structure */ static int /* PRIVATE */ png_text_compress(png_structp png_ptr, png_charp text, png_size_t text_len, int compression, compression_state *comp) { int ret; comp->num_output_ptr = 0; comp->max_output_ptr = 0; comp->output_ptr = NULL; comp->input = NULL; comp->input_len = 0; /* we may just want to pass the text right through */ if (compression == PNG_TEXT_COMPRESSION_NONE) { comp->input = text; comp->input_len = text_len; return((int)text_len); } if (compression >= PNG_TEXT_COMPRESSION_LAST) { #if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE) char msg[50]; png_snprintf(msg, 50, "Unknown compression type %d", compression); png_warning(png_ptr, msg); #else png_warning(png_ptr, "Unknown compression type"); #endif } /* We can't write the chunk until we find out how much data we have, * which means we need to run the compressor first and save the * output. This shouldn't be a problem, as the vast majority of * comments should be reasonable, but we will set up an array of * malloc'd pointers to be sure. * * If we knew the application was well behaved, we could simplify this * greatly by assuming we can always malloc an output buffer large * enough to hold the compressed text ((1001 * text_len / 1000) + 12) * and malloc this directly. The only time this would be a bad idea is * if we can't malloc more than 64K and we have 64K of random input * data, or if the input string is incredibly large (although this * wouldn't cause a failure, just a slowdown due to swapping). */ /* set up the compression buffers */ png_ptr->zstream.avail_in = (uInt)text_len; png_ptr->zstream.next_in = (Bytef *)text; png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; png_ptr->zstream.next_out = (Bytef *)png_ptr->zbuf; /* this is the same compression loop as in png_write_row() */ do { /* compress the data */ ret = deflate(&png_ptr->zstream, Z_NO_FLUSH); if (ret != Z_OK) { /* error */ if (png_ptr->zstream.msg != NULL) png_error(png_ptr, png_ptr->zstream.msg); else png_error(png_ptr, "zlib error"); } /* check to see if we need more room */ if (!(png_ptr->zstream.avail_out)) { /* make sure the output array has room */ if (comp->num_output_ptr >= comp->max_output_ptr) { int old_max; old_max = comp->max_output_ptr; comp->max_output_ptr = comp->num_output_ptr + 4; if (comp->output_ptr != NULL) { png_charpp old_ptr; old_ptr = comp->output_ptr; comp->output_ptr = (png_charpp)png_malloc(png_ptr, (png_uint_32)(comp->max_output_ptr * png_sizeof (png_charpp))); png_memcpy(comp->output_ptr, old_ptr, old_max * png_sizeof (png_charp)); png_free(png_ptr, old_ptr); } else comp->output_ptr = (png_charpp)png_malloc(png_ptr, (png_uint_32)(comp->max_output_ptr * png_sizeof (png_charp))); } /* save the data */ comp->output_ptr[comp->num_output_ptr] = (png_charp)png_malloc(png_ptr, (png_uint_32)png_ptr->zbuf_size); png_memcpy(comp->output_ptr[comp->num_output_ptr], png_ptr->zbuf, png_ptr->zbuf_size); comp->num_output_ptr++; /* and reset the buffer */ png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; png_ptr->zstream.next_out = png_ptr->zbuf; } /* continue until we don't have any more to compress */ } while (png_ptr->zstream.avail_in); /* finish the compression */ do { /* tell zlib we are finished */ ret = deflate(&png_ptr->zstream, Z_FINISH); if (ret == Z_OK) { /* check to see if we need more room */ if (!(png_ptr->zstream.avail_out)) { /* check to make sure our output array has room */ if (comp->num_output_ptr >= comp->max_output_ptr) { int old_max; old_max = comp->max_output_ptr; comp->max_output_ptr = comp->num_output_ptr + 4; if (comp->output_ptr != NULL) { png_charpp old_ptr; old_ptr = comp->output_ptr; /* This could be optimized to realloc() */ comp->output_ptr = (png_charpp)png_malloc(png_ptr, (png_uint_32)(comp->max_output_ptr * png_sizeof (png_charpp))); png_memcpy(comp->output_ptr, old_ptr, old_max * png_sizeof (png_charp)); png_free(png_ptr, old_ptr); } else comp->output_ptr = (png_charpp)png_malloc(png_ptr, (png_uint_32)(comp->max_output_ptr * png_sizeof (png_charp))); } /* save off the data */ comp->output_ptr[comp->num_output_ptr] = (png_charp)png_malloc(png_ptr, (png_uint_32)png_ptr->zbuf_size); png_memcpy(comp->output_ptr[comp->num_output_ptr], png_ptr->zbuf, png_ptr->zbuf_size); comp->num_output_ptr++; /* and reset the buffer pointers */ png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; png_ptr->zstream.next_out = png_ptr->zbuf; } } else if (ret != Z_STREAM_END) { /* we got an error */ if (png_ptr->zstream.msg != NULL) png_error(png_ptr, png_ptr->zstream.msg); else png_error(png_ptr, "zlib error"); } } while (ret != Z_STREAM_END); /* text length is number of buffers plus last buffer */ text_len = png_ptr->zbuf_size * comp->num_output_ptr; if (png_ptr->zstream.avail_out < png_ptr->zbuf_size) text_len += png_ptr->zbuf_size - (png_size_t)png_ptr->zstream.avail_out; return((int)text_len); } /* ship the compressed text out via chunk writes */ static void /* PRIVATE */ png_write_compressed_data_out(png_structp png_ptr, compression_state *comp) { int i; /* handle the no-compression case */ if (comp->input) { png_write_chunk_data(png_ptr, (png_bytep)comp->input, (png_size_t)comp->input_len); return; } /* write saved output buffers, if any */ for (i = 0; i < comp->num_output_ptr; i++) { png_write_chunk_data(png_ptr,(png_bytep)comp->output_ptr[i], png_ptr->zbuf_size); png_free(png_ptr, comp->output_ptr[i]); comp->output_ptr[i]=NULL; } if (comp->max_output_ptr != 0) png_free(png_ptr, comp->output_ptr); comp->output_ptr=NULL; /* write anything left in zbuf */ if (png_ptr->zstream.avail_out < (png_uint_32)png_ptr->zbuf_size) png_write_chunk_data(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size - png_ptr->zstream.avail_out); /* reset zlib for another zTXt/iTXt or image data */ deflateReset(&png_ptr->zstream); png_ptr->zstream.data_type = Z_BINARY; } #endif /* Write the IHDR chunk, and update the png_struct with the necessary * information. Note that the rest of this code depends upon this * information being correct. */ void /* PRIVATE */ png_write_IHDR(png_structp png_ptr, png_uint_32 width, png_uint_32 height, int bit_depth, int color_type, int compression_type, int filter_type, int interlace_type) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_IHDR; #endif int ret; png_byte buf[13]; /* buffer to store the IHDR info */ png_debug(1, "in png_write_IHDR\n"); /* Check that we have valid input data from the application info */ switch (color_type) { case PNG_COLOR_TYPE_GRAY: switch (bit_depth) { case 1: case 2: case 4: case 8: case 16: png_ptr->channels = 1; break; default: png_error(png_ptr,"Invalid bit depth for grayscale image"); } break; case PNG_COLOR_TYPE_RGB: if (bit_depth != 8 && bit_depth != 16) png_error(png_ptr, "Invalid bit depth for RGB image"); png_ptr->channels = 3; break; case PNG_COLOR_TYPE_PALETTE: switch (bit_depth) { case 1: case 2: case 4: case 8: png_ptr->channels = 1; break; default: png_error(png_ptr, "Invalid bit depth for paletted image"); } break; case PNG_COLOR_TYPE_GRAY_ALPHA: if (bit_depth != 8 && bit_depth != 16) png_error(png_ptr, "Invalid bit depth for grayscale+alpha image"); png_ptr->channels = 2; break; case PNG_COLOR_TYPE_RGB_ALPHA: if (bit_depth != 8 && bit_depth != 16) png_error(png_ptr, "Invalid bit depth for RGBA image"); png_ptr->channels = 4; break; default: png_error(png_ptr, "Invalid image color type specified"); } if (compression_type != PNG_COMPRESSION_TYPE_BASE) { png_warning(png_ptr, "Invalid compression type specified"); compression_type = PNG_COMPRESSION_TYPE_BASE; } /* Write filter_method 64 (intrapixel differencing) only if * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and * 2. Libpng did not write a PNG signature (this filter_method is only * used in PNG datastreams that are embedded in MNG datastreams) and * 3. The application called png_permit_mng_features with a mask that * included PNG_FLAG_MNG_FILTER_64 and * 4. The filter_method is 64 and * 5. The color_type is RGB or RGBA */ if ( #if defined(PNG_MNG_FEATURES_SUPPORTED) !((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) && ((png_ptr->mode&PNG_HAVE_PNG_SIGNATURE) == 0) && (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_RGB_ALPHA) && (filter_type == PNG_INTRAPIXEL_DIFFERENCING)) && #endif filter_type != PNG_FILTER_TYPE_BASE) { png_warning(png_ptr, "Invalid filter type specified"); filter_type = PNG_FILTER_TYPE_BASE; } #ifdef PNG_WRITE_INTERLACING_SUPPORTED if (interlace_type != PNG_INTERLACE_NONE && interlace_type != PNG_INTERLACE_ADAM7) { png_warning(png_ptr, "Invalid interlace type specified"); interlace_type = PNG_INTERLACE_ADAM7; } #else interlace_type=PNG_INTERLACE_NONE; #endif /* save off the relevent information */ png_ptr->bit_depth = (png_byte)bit_depth; png_ptr->color_type = (png_byte)color_type; png_ptr->interlaced = (png_byte)interlace_type; #if defined(PNG_MNG_FEATURES_SUPPORTED) png_ptr->filter_type = (png_byte)filter_type; #endif png_ptr->compression_type = (png_byte)compression_type; png_ptr->width = width; png_ptr->height = height; png_ptr->pixel_depth = (png_byte)(bit_depth * png_ptr->channels); png_ptr->rowbytes = PNG_ROWBYTES(png_ptr->pixel_depth, width); /* set the usr info, so any transformations can modify it */ png_ptr->usr_width = png_ptr->width; png_ptr->usr_bit_depth = png_ptr->bit_depth; png_ptr->usr_channels = png_ptr->channels; /* pack the header information into the buffer */ png_save_uint_32(buf, width); png_save_uint_32(buf + 4, height); buf[8] = (png_byte)bit_depth; buf[9] = (png_byte)color_type; buf[10] = (png_byte)compression_type; buf[11] = (png_byte)filter_type; buf[12] = (png_byte)interlace_type; /* write the chunk */ png_write_chunk(png_ptr, png_IHDR, buf, (png_size_t)13); /* initialize zlib with PNG info */ png_ptr->zstream.zalloc = png_zalloc; png_ptr->zstream.zfree = png_zfree; png_ptr->zstream.opaque = (voidpf)png_ptr; if (!(png_ptr->do_filter)) { if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE || png_ptr->bit_depth < 8) png_ptr->do_filter = PNG_FILTER_NONE; else png_ptr->do_filter = PNG_ALL_FILTERS; } if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_STRATEGY)) { if (png_ptr->do_filter != PNG_FILTER_NONE) png_ptr->zlib_strategy = Z_FILTERED; else png_ptr->zlib_strategy = Z_DEFAULT_STRATEGY; } if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_LEVEL)) png_ptr->zlib_level = Z_DEFAULT_COMPRESSION; if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_MEM_LEVEL)) png_ptr->zlib_mem_level = 8; if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_WINDOW_BITS)) png_ptr->zlib_window_bits = 15; if (!(png_ptr->flags & PNG_FLAG_ZLIB_CUSTOM_METHOD)) png_ptr->zlib_method = 8; ret = deflateInit2(&png_ptr->zstream, png_ptr->zlib_level, png_ptr->zlib_method, png_ptr->zlib_window_bits, png_ptr->zlib_mem_level, png_ptr->zlib_strategy); if (ret != Z_OK) { if (ret == Z_VERSION_ERROR) png_error(png_ptr, "zlib failed to initialize compressor -- version error"); if (ret == Z_STREAM_ERROR) png_error(png_ptr, "zlib failed to initialize compressor -- stream error"); if (ret == Z_MEM_ERROR) png_error(png_ptr, "zlib failed to initialize compressor -- mem error"); png_error(png_ptr, "zlib failed to initialize compressor"); } png_ptr->zstream.next_out = png_ptr->zbuf; png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; /* libpng is not interested in zstream.data_type */ /* set it to a predefined value, to avoid its evaluation inside zlib */ png_ptr->zstream.data_type = Z_BINARY; png_ptr->mode = PNG_HAVE_IHDR; } /* write the palette. We are careful not to trust png_color to be in the * correct order for PNG, so people can redefine it to any convenient * structure. */ void /* PRIVATE */ png_write_PLTE(png_structp png_ptr, png_colorp palette, png_uint_32 num_pal) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_PLTE; #endif png_uint_32 i; png_colorp pal_ptr; png_byte buf[3]; png_debug(1, "in png_write_PLTE\n"); if (( #if defined(PNG_MNG_FEATURES_SUPPORTED) !(png_ptr->mng_features_permitted & PNG_FLAG_MNG_EMPTY_PLTE) && #endif num_pal == 0) || num_pal > 256) { if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) { png_error(png_ptr, "Invalid number of colors in palette"); } else { png_warning(png_ptr, "Invalid number of colors in palette"); return; } } if (!(png_ptr->color_type&PNG_COLOR_MASK_COLOR)) { png_warning(png_ptr, "Ignoring request to write a PLTE chunk in grayscale PNG"); return; } png_ptr->num_palette = (png_uint_16)num_pal; png_debug1(3, "num_palette = %d\n", png_ptr->num_palette); png_write_chunk_start(png_ptr, png_PLTE, num_pal * 3); #ifndef PNG_NO_POINTER_INDEXING for (i = 0, pal_ptr = palette; i < num_pal; i++, pal_ptr++) { buf[0] = pal_ptr->red; buf[1] = pal_ptr->green; buf[2] = pal_ptr->blue; png_write_chunk_data(png_ptr, buf, (png_size_t)3); } #else /* This is a little slower but some buggy compilers need to do this instead */ pal_ptr=palette; for (i = 0; i < num_pal; i++) { buf[0] = pal_ptr[i].red; buf[1] = pal_ptr[i].green; buf[2] = pal_ptr[i].blue; png_write_chunk_data(png_ptr, buf, (png_size_t)3); } #endif png_write_chunk_end(png_ptr); png_ptr->mode |= PNG_HAVE_PLTE; } /* write an IDAT chunk */ void /* PRIVATE */ png_write_IDAT(png_structp png_ptr, png_bytep data, png_size_t length) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_IDAT; #endif png_debug(1, "in png_write_IDAT\n"); /* Optimize the CMF field in the zlib stream. */ /* This hack of the zlib stream is compliant to the stream specification. */ if (!(png_ptr->mode & PNG_HAVE_IDAT) && png_ptr->compression_type == PNG_COMPRESSION_TYPE_BASE) { unsigned int z_cmf = data[0]; /* zlib compression method and flags */ if ((z_cmf & 0x0f) == 8 && (z_cmf & 0xf0) <= 0x70) { /* Avoid memory underflows and multiplication overflows. */ /* The conditions below are practically always satisfied; however, they still must be checked. */ if (length >= 2 && png_ptr->height < 16384 && png_ptr->width < 16384) { png_uint_32 uncompressed_idat_size = png_ptr->height * ((png_ptr->width * png_ptr->channels * png_ptr->bit_depth + 15) >> 3); unsigned int z_cinfo = z_cmf >> 4; unsigned int half_z_window_size = 1 << (z_cinfo + 7); while (uncompressed_idat_size <= half_z_window_size && half_z_window_size >= 256) { z_cinfo--; half_z_window_size >>= 1; } z_cmf = (z_cmf & 0x0f) | (z_cinfo << 4); if (data[0] != (png_byte)z_cmf) { data[0] = (png_byte)z_cmf; data[1] &= 0xe0; data[1] += (png_byte)(0x1f - ((z_cmf << 8) + data[1]) % 0x1f); } } } else png_error(png_ptr, "Invalid zlib compression method or flags in IDAT"); } png_write_chunk(png_ptr, png_IDAT, data, length); png_ptr->mode |= PNG_HAVE_IDAT; } /* write an IEND chunk */ void /* PRIVATE */ png_write_IEND(png_structp png_ptr) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_IEND; #endif png_debug(1, "in png_write_IEND\n"); png_write_chunk(png_ptr, png_IEND, png_bytep_NULL, (png_size_t)0); png_ptr->mode |= PNG_HAVE_IEND; } #if defined(PNG_WRITE_gAMA_SUPPORTED) /* write a gAMA chunk */ #ifdef PNG_FLOATING_POINT_SUPPORTED void /* PRIVATE */ png_write_gAMA(png_structp png_ptr, double file_gamma) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_gAMA; #endif png_uint_32 igamma; png_byte buf[4]; png_debug(1, "in png_write_gAMA\n"); /* file_gamma is saved in 1/100,000ths */ igamma = (png_uint_32)(file_gamma * 100000.0 + 0.5); png_save_uint_32(buf, igamma); png_write_chunk(png_ptr, png_gAMA, buf, (png_size_t)4); } #endif #ifdef PNG_FIXED_POINT_SUPPORTED void /* PRIVATE */ png_write_gAMA_fixed(png_structp png_ptr, png_fixed_point file_gamma) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_gAMA; #endif png_byte buf[4]; png_debug(1, "in png_write_gAMA\n"); /* file_gamma is saved in 1/100,000ths */ png_save_uint_32(buf, (png_uint_32)file_gamma); png_write_chunk(png_ptr, png_gAMA, buf, (png_size_t)4); } #endif #endif #if defined(PNG_WRITE_sRGB_SUPPORTED) /* write a sRGB chunk */ void /* PRIVATE */ png_write_sRGB(png_structp png_ptr, int srgb_intent) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_sRGB; #endif png_byte buf[1]; png_debug(1, "in png_write_sRGB\n"); if(srgb_intent >= PNG_sRGB_INTENT_LAST) png_warning(png_ptr, "Invalid sRGB rendering intent specified"); buf[0]=(png_byte)srgb_intent; png_write_chunk(png_ptr, png_sRGB, buf, (png_size_t)1); } #endif #if defined(PNG_WRITE_iCCP_SUPPORTED) /* write an iCCP chunk */ void /* PRIVATE */ png_write_iCCP(png_structp png_ptr, png_charp name, int compression_type, png_charp profile, int profile_len) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_iCCP; #endif png_size_t name_len; png_charp new_name; compression_state comp; int embedded_profile_len = 0; png_debug(1, "in png_write_iCCP\n"); comp.num_output_ptr = 0; comp.max_output_ptr = 0; comp.output_ptr = NULL; comp.input = NULL; comp.input_len = 0; if (name == NULL || (name_len = png_check_keyword(png_ptr, name, &new_name)) == 0) { png_warning(png_ptr, "Empty keyword in iCCP chunk"); return; } if (compression_type != PNG_COMPRESSION_TYPE_BASE) png_warning(png_ptr, "Unknown compression type in iCCP chunk"); if (profile == NULL) profile_len = 0; if (profile_len > 3) embedded_profile_len = ((*( (png_bytep)profile ))<<24) | ((*( (png_bytep)profile+1))<<16) | ((*( (png_bytep)profile+2))<< 8) | ((*( (png_bytep)profile+3)) ); if (profile_len < embedded_profile_len) { png_warning(png_ptr, "Embedded profile length too large in iCCP chunk"); return; } if (profile_len > embedded_profile_len) { png_warning(png_ptr, "Truncating profile to actual length in iCCP chunk"); profile_len = embedded_profile_len; } if (profile_len) profile_len = png_text_compress(png_ptr, profile, (png_size_t)profile_len, PNG_COMPRESSION_TYPE_BASE, &comp); /* make sure we include the NULL after the name and the compression type */ png_write_chunk_start(png_ptr, png_iCCP, (png_uint_32)name_len+profile_len+2); new_name[name_len+1]=0x00; png_write_chunk_data(png_ptr, (png_bytep)new_name, name_len + 2); if (profile_len) png_write_compressed_data_out(png_ptr, &comp); png_write_chunk_end(png_ptr); png_free(png_ptr, new_name); } #endif #if defined(PNG_WRITE_sPLT_SUPPORTED) /* write a sPLT chunk */ void /* PRIVATE */ png_write_sPLT(png_structp png_ptr, png_sPLT_tp spalette) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_sPLT; #endif png_size_t name_len; png_charp new_name; png_byte entrybuf[10]; int entry_size = (spalette->depth == 8 ? 6 : 10); int palette_size = entry_size * spalette->nentries; png_sPLT_entryp ep; #ifdef PNG_NO_POINTER_INDEXING int i; #endif png_debug(1, "in png_write_sPLT\n"); if (spalette->name == NULL || (name_len = png_check_keyword(png_ptr, spalette->name, &new_name))==0) { png_warning(png_ptr, "Empty keyword in sPLT chunk"); return; } /* make sure we include the NULL after the name */ png_write_chunk_start(png_ptr, png_sPLT, (png_uint_32)(name_len + 2 + palette_size)); png_write_chunk_data(png_ptr, (png_bytep)new_name, name_len + 1); png_write_chunk_data(png_ptr, (png_bytep)&spalette->depth, 1); /* loop through each palette entry, writing appropriately */ #ifndef PNG_NO_POINTER_INDEXING for (ep = spalette->entries; ep<spalette->entries+spalette->nentries; ep++) { if (spalette->depth == 8) { entrybuf[0] = (png_byte)ep->red; entrybuf[1] = (png_byte)ep->green; entrybuf[2] = (png_byte)ep->blue; entrybuf[3] = (png_byte)ep->alpha; png_save_uint_16(entrybuf + 4, ep->frequency); } else { png_save_uint_16(entrybuf + 0, ep->red); png_save_uint_16(entrybuf + 2, ep->green); png_save_uint_16(entrybuf + 4, ep->blue); png_save_uint_16(entrybuf + 6, ep->alpha); png_save_uint_16(entrybuf + 8, ep->frequency); } png_write_chunk_data(png_ptr, entrybuf, (png_size_t)entry_size); } #else ep=spalette->entries; for (i=0; i>spalette->nentries; i++) { if (spalette->depth == 8) { entrybuf[0] = (png_byte)ep[i].red; entrybuf[1] = (png_byte)ep[i].green; entrybuf[2] = (png_byte)ep[i].blue; entrybuf[3] = (png_byte)ep[i].alpha; png_save_uint_16(entrybuf + 4, ep[i].frequency); } else { png_save_uint_16(entrybuf + 0, ep[i].red); png_save_uint_16(entrybuf + 2, ep[i].green); png_save_uint_16(entrybuf + 4, ep[i].blue); png_save_uint_16(entrybuf + 6, ep[i].alpha); png_save_uint_16(entrybuf + 8, ep[i].frequency); } png_write_chunk_data(png_ptr, entrybuf, entry_size); } #endif png_write_chunk_end(png_ptr); png_free(png_ptr, new_name); } #endif #if defined(PNG_WRITE_sBIT_SUPPORTED) /* write the sBIT chunk */ void /* PRIVATE */ png_write_sBIT(png_structp png_ptr, png_color_8p sbit, int color_type) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_sBIT; #endif png_byte buf[4]; png_size_t size; png_debug(1, "in png_write_sBIT\n"); /* make sure we don't depend upon the order of PNG_COLOR_8 */ if (color_type & PNG_COLOR_MASK_COLOR) { png_byte maxbits; maxbits = (png_byte)(color_type==PNG_COLOR_TYPE_PALETTE ? 8 : png_ptr->usr_bit_depth); if (sbit->red == 0 || sbit->red > maxbits || sbit->green == 0 || sbit->green > maxbits || sbit->blue == 0 || sbit->blue > maxbits) { png_warning(png_ptr, "Invalid sBIT depth specified"); return; } buf[0] = sbit->red; buf[1] = sbit->green; buf[2] = sbit->blue; size = 3; } else { if (sbit->gray == 0 || sbit->gray > png_ptr->usr_bit_depth) { png_warning(png_ptr, "Invalid sBIT depth specified"); return; } buf[0] = sbit->gray; size = 1; } if (color_type & PNG_COLOR_MASK_ALPHA) { if (sbit->alpha == 0 || sbit->alpha > png_ptr->usr_bit_depth) { png_warning(png_ptr, "Invalid sBIT depth specified"); return; } buf[size++] = sbit->alpha; } png_write_chunk(png_ptr, png_sBIT, buf, size); } #endif #if defined(PNG_WRITE_cHRM_SUPPORTED) /* write the cHRM chunk */ #ifdef PNG_FLOATING_POINT_SUPPORTED void /* PRIVATE */ png_write_cHRM(png_structp png_ptr, double white_x, double white_y, double red_x, double red_y, double green_x, double green_y, double blue_x, double blue_y) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_cHRM; #endif png_byte buf[32]; png_uint_32 itemp; png_debug(1, "in png_write_cHRM\n"); /* each value is saved in 1/100,000ths */ if (white_x < 0 || white_x > 0.8 || white_y < 0 || white_y > 0.8 || white_x + white_y > 1.0) { png_warning(png_ptr, "Invalid cHRM white point specified"); #if !defined(PNG_NO_CONSOLE_IO) fprintf(stderr,"white_x=%f, white_y=%f\n",white_x, white_y); #endif return; } itemp = (png_uint_32)(white_x * 100000.0 + 0.5); png_save_uint_32(buf, itemp); itemp = (png_uint_32)(white_y * 100000.0 + 0.5); png_save_uint_32(buf + 4, itemp); if (red_x < 0 || red_y < 0 || red_x + red_y > 1.0) { png_warning(png_ptr, "Invalid cHRM red point specified"); return; } itemp = (png_uint_32)(red_x * 100000.0 + 0.5); png_save_uint_32(buf + 8, itemp); itemp = (png_uint_32)(red_y * 100000.0 + 0.5); png_save_uint_32(buf + 12, itemp); if (green_x < 0 || green_y < 0 || green_x + green_y > 1.0) { png_warning(png_ptr, "Invalid cHRM green point specified"); return; } itemp = (png_uint_32)(green_x * 100000.0 + 0.5); png_save_uint_32(buf + 16, itemp); itemp = (png_uint_32)(green_y * 100000.0 + 0.5); png_save_uint_32(buf + 20, itemp); if (blue_x < 0 || blue_y < 0 || blue_x + blue_y > 1.0) { png_warning(png_ptr, "Invalid cHRM blue point specified"); return; } itemp = (png_uint_32)(blue_x * 100000.0 + 0.5); png_save_uint_32(buf + 24, itemp); itemp = (png_uint_32)(blue_y * 100000.0 + 0.5); png_save_uint_32(buf + 28, itemp); png_write_chunk(png_ptr, png_cHRM, buf, (png_size_t)32); } #endif #ifdef PNG_FIXED_POINT_SUPPORTED void /* PRIVATE */ png_write_cHRM_fixed(png_structp png_ptr, png_fixed_point white_x, png_fixed_point white_y, png_fixed_point red_x, png_fixed_point red_y, png_fixed_point green_x, png_fixed_point green_y, png_fixed_point blue_x, png_fixed_point blue_y) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_cHRM; #endif png_byte buf[32]; png_debug(1, "in png_write_cHRM\n"); /* each value is saved in 1/100,000ths */ if (white_x > 80000L || white_y > 80000L || white_x + white_y > 100000L) { png_warning(png_ptr, "Invalid fixed cHRM white point specified"); #if !defined(PNG_NO_CONSOLE_IO) fprintf(stderr,"white_x=%ld, white_y=%ld\n",white_x, white_y); #endif return; } png_save_uint_32(buf, (png_uint_32)white_x); png_save_uint_32(buf + 4, (png_uint_32)white_y); if (red_x + red_y > 100000L) { png_warning(png_ptr, "Invalid cHRM fixed red point specified"); return; } png_save_uint_32(buf + 8, (png_uint_32)red_x); png_save_uint_32(buf + 12, (png_uint_32)red_y); if (green_x + green_y > 100000L) { png_warning(png_ptr, "Invalid fixed cHRM green point specified"); return; } png_save_uint_32(buf + 16, (png_uint_32)green_x); png_save_uint_32(buf + 20, (png_uint_32)green_y); if (blue_x + blue_y > 100000L) { png_warning(png_ptr, "Invalid fixed cHRM blue point specified"); return; } png_save_uint_32(buf + 24, (png_uint_32)blue_x); png_save_uint_32(buf + 28, (png_uint_32)blue_y); png_write_chunk(png_ptr, png_cHRM, buf, (png_size_t)32); } #endif #endif #if defined(PNG_WRITE_tRNS_SUPPORTED) /* write the tRNS chunk */ void /* PRIVATE */ png_write_tRNS(png_structp png_ptr, png_bytep trans, png_color_16p tran, int num_trans, int color_type) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_tRNS; #endif png_byte buf[6]; png_debug(1, "in png_write_tRNS\n"); if (color_type == PNG_COLOR_TYPE_PALETTE) { if (num_trans <= 0 || num_trans > (int)png_ptr->num_palette) { png_warning(png_ptr,"Invalid number of transparent colors specified"); return; } /* write the chunk out as it is */ png_write_chunk(png_ptr, png_tRNS, trans, (png_size_t)num_trans); } else if (color_type == PNG_COLOR_TYPE_GRAY) { /* one 16 bit value */ if(tran->gray >= (1 << png_ptr->bit_depth)) { png_warning(png_ptr, "Ignoring attempt to write tRNS chunk out-of-range for bit_depth"); return; } png_save_uint_16(buf, tran->gray); png_write_chunk(png_ptr, png_tRNS, buf, (png_size_t)2); } else if (color_type == PNG_COLOR_TYPE_RGB) { /* three 16 bit values */ png_save_uint_16(buf, tran->red); png_save_uint_16(buf + 2, tran->green); png_save_uint_16(buf + 4, tran->blue); if(png_ptr->bit_depth == 8 && (buf[0] | buf[2] | buf[4])) { png_warning(png_ptr, "Ignoring attempt to write 16-bit tRNS chunk when bit_depth is 8"); return; } png_write_chunk(png_ptr, png_tRNS, buf, (png_size_t)6); } else { png_warning(png_ptr, "Can't write tRNS with an alpha channel"); } } #endif #if defined(PNG_WRITE_bKGD_SUPPORTED) /* write the background chunk */ void /* PRIVATE */ png_write_bKGD(png_structp png_ptr, png_color_16p back, int color_type) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_bKGD; #endif png_byte buf[6]; png_debug(1, "in png_write_bKGD\n"); if (color_type == PNG_COLOR_TYPE_PALETTE) { if ( #if defined(PNG_MNG_FEATURES_SUPPORTED) (png_ptr->num_palette || (!(png_ptr->mng_features_permitted & PNG_FLAG_MNG_EMPTY_PLTE))) && #endif back->index > png_ptr->num_palette) { png_warning(png_ptr, "Invalid background palette index"); return; } buf[0] = back->index; png_write_chunk(png_ptr, png_bKGD, buf, (png_size_t)1); } else if (color_type & PNG_COLOR_MASK_COLOR) { png_save_uint_16(buf, back->red); png_save_uint_16(buf + 2, back->green); png_save_uint_16(buf + 4, back->blue); if(png_ptr->bit_depth == 8 && (buf[0] | buf[2] | buf[4])) { png_warning(png_ptr, "Ignoring attempt to write 16-bit bKGD chunk when bit_depth is 8"); return; } png_write_chunk(png_ptr, png_bKGD, buf, (png_size_t)6); } else { if(back->gray >= (1 << png_ptr->bit_depth)) { png_warning(png_ptr, "Ignoring attempt to write bKGD chunk out-of-range for bit_depth"); return; } png_save_uint_16(buf, back->gray); png_write_chunk(png_ptr, png_bKGD, buf, (png_size_t)2); } } #endif #if defined(PNG_WRITE_hIST_SUPPORTED) /* write the histogram */ void /* PRIVATE */ png_write_hIST(png_structp png_ptr, png_uint_16p hist, int num_hist) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_hIST; #endif int i; png_byte buf[3]; png_debug(1, "in png_write_hIST\n"); if (num_hist > (int)png_ptr->num_palette) { png_debug2(3, "num_hist = %d, num_palette = %d\n", num_hist, png_ptr->num_palette); png_warning(png_ptr, "Invalid number of histogram entries specified"); return; } png_write_chunk_start(png_ptr, png_hIST, (png_uint_32)(num_hist * 2)); for (i = 0; i < num_hist; i++) { png_save_uint_16(buf, hist[i]); png_write_chunk_data(png_ptr, buf, (png_size_t)2); } png_write_chunk_end(png_ptr); } #endif #if defined(PNG_WRITE_TEXT_SUPPORTED) || defined(PNG_WRITE_pCAL_SUPPORTED) || \ defined(PNG_WRITE_iCCP_SUPPORTED) || defined(PNG_WRITE_sPLT_SUPPORTED) /* Check that the tEXt or zTXt keyword is valid per PNG 1.0 specification, * and if invalid, correct the keyword rather than discarding the entire * chunk. The PNG 1.0 specification requires keywords 1-79 characters in * length, forbids leading or trailing whitespace, multiple internal spaces, * and the non-break space (0x80) from ISO 8859-1. Returns keyword length. * * The new_key is allocated to hold the corrected keyword and must be freed * by the calling routine. This avoids problems with trying to write to * static keywords without having to have duplicate copies of the strings. */ png_size_t /* PRIVATE */ png_check_keyword(png_structp png_ptr, png_charp key, png_charpp new_key) { png_size_t key_len; png_charp kp, dp; int kflag; int kwarn=0; png_debug(1, "in png_check_keyword\n"); *new_key = NULL; if (key == NULL || (key_len = png_strlen(key)) == 0) { png_warning(png_ptr, "zero length keyword"); return ((png_size_t)0); } png_debug1(2, "Keyword to be checked is '%s'\n", key); *new_key = (png_charp)png_malloc_warn(png_ptr, (png_uint_32)(key_len + 2)); if (*new_key == NULL) { png_warning(png_ptr, "Out of memory while procesing keyword"); return ((png_size_t)0); } /* Replace non-printing characters with a blank and print a warning */ for (kp = key, dp = *new_key; *kp != '\0'; kp++, dp++) { if ((png_byte)*kp < 0x20 || ((png_byte)*kp > 0x7E && (png_byte)*kp < 0xA1)) { #if !defined(PNG_NO_STDIO) && !defined(_WIN32_WCE) char msg[40]; png_snprintf(msg, 40, "invalid keyword character 0x%02X", (png_byte)*kp); png_warning(png_ptr, msg); #else png_warning(png_ptr, "invalid character in keyword"); #endif *dp = ' '; } else { *dp = *kp; } } *dp = '\0'; /* Remove any trailing white space. */ kp = *new_key + key_len - 1; if (*kp == ' ') { png_warning(png_ptr, "trailing spaces removed from keyword"); while (*kp == ' ') { *(kp--) = '\0'; key_len--; } } /* Remove any leading white space. */ kp = *new_key; if (*kp == ' ') { png_warning(png_ptr, "leading spaces removed from keyword"); while (*kp == ' ') { kp++; key_len--; } } png_debug1(2, "Checking for multiple internal spaces in '%s'\n", kp); /* Remove multiple internal spaces. */ for (kflag = 0, dp = *new_key; *kp != '\0'; kp++) { if (*kp == ' ' && kflag == 0) { *(dp++) = *kp; kflag = 1; } else if (*kp == ' ') { key_len--; kwarn=1; } else { *(dp++) = *kp; kflag = 0; } } *dp = '\0'; if(kwarn) png_warning(png_ptr, "extra interior spaces removed from keyword"); if (key_len == 0) { png_free(png_ptr, *new_key); *new_key=NULL; png_warning(png_ptr, "Zero length keyword"); } if (key_len > 79) { png_warning(png_ptr, "keyword length must be 1 - 79 characters"); new_key[79] = '\0'; key_len = 79; } return (key_len); } #endif #if defined(PNG_WRITE_tEXt_SUPPORTED) /* write a tEXt chunk */ void /* PRIVATE */ png_write_tEXt(png_structp png_ptr, png_charp key, png_charp text, png_size_t text_len) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_tEXt; #endif png_size_t key_len; png_charp new_key; png_debug(1, "in png_write_tEXt\n"); if (key == NULL || (key_len = png_check_keyword(png_ptr, key, &new_key))==0) { png_warning(png_ptr, "Empty keyword in tEXt chunk"); return; } if (text == NULL || *text == '\0') text_len = 0; else text_len = png_strlen(text); /* make sure we include the 0 after the key */ png_write_chunk_start(png_ptr, png_tEXt, (png_uint_32)key_len+text_len+1); /* * We leave it to the application to meet PNG-1.0 requirements on the * contents of the text. PNG-1.0 through PNG-1.2 discourage the use of * any non-Latin-1 characters except for NEWLINE. ISO PNG will forbid them. * The NUL character is forbidden by PNG-1.0 through PNG-1.2 and ISO PNG. */ png_write_chunk_data(png_ptr, (png_bytep)new_key, key_len + 1); if (text_len) png_write_chunk_data(png_ptr, (png_bytep)text, text_len); png_write_chunk_end(png_ptr); png_free(png_ptr, new_key); } #endif #if defined(PNG_WRITE_zTXt_SUPPORTED) /* write a compressed text chunk */ void /* PRIVATE */ png_write_zTXt(png_structp png_ptr, png_charp key, png_charp text, png_size_t text_len, int compression) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_zTXt; #endif png_size_t key_len; char buf[1]; png_charp new_key; compression_state comp; png_debug(1, "in png_write_zTXt\n"); comp.num_output_ptr = 0; comp.max_output_ptr = 0; comp.output_ptr = NULL; comp.input = NULL; comp.input_len = 0; if (key == NULL || (key_len = png_check_keyword(png_ptr, key, &new_key))==0) { png_warning(png_ptr, "Empty keyword in zTXt chunk"); return; } if (text == NULL || *text == '\0' || compression==PNG_TEXT_COMPRESSION_NONE) { png_write_tEXt(png_ptr, new_key, text, (png_size_t)0); png_free(png_ptr, new_key); return; } text_len = png_strlen(text); /* compute the compressed data; do it now for the length */ text_len = png_text_compress(png_ptr, text, text_len, compression, &comp); /* write start of chunk */ png_write_chunk_start(png_ptr, png_zTXt, (png_uint_32) (key_len+text_len+2)); /* write key */ png_write_chunk_data(png_ptr, (png_bytep)new_key, key_len + 1); png_free(png_ptr, new_key); buf[0] = (png_byte)compression; /* write compression */ png_write_chunk_data(png_ptr, (png_bytep)buf, (png_size_t)1); /* write the compressed data */ png_write_compressed_data_out(png_ptr, &comp); /* close the chunk */ png_write_chunk_end(png_ptr); } #endif #if defined(PNG_WRITE_iTXt_SUPPORTED) /* write an iTXt chunk */ void /* PRIVATE */ png_write_iTXt(png_structp png_ptr, int compression, png_charp key, png_charp lang, png_charp lang_key, png_charp text) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_iTXt; #endif png_size_t lang_len, key_len, lang_key_len, text_len; png_charp new_lang, new_key; png_byte cbuf[2]; compression_state comp; png_debug(1, "in png_write_iTXt\n"); comp.num_output_ptr = 0; comp.max_output_ptr = 0; comp.output_ptr = NULL; comp.input = NULL; if (key == NULL || (key_len = png_check_keyword(png_ptr, key, &new_key))==0) { png_warning(png_ptr, "Empty keyword in iTXt chunk"); return; } if (lang == NULL || (lang_len = png_check_keyword(png_ptr, lang, &new_lang))==0) { png_warning(png_ptr, "Empty language field in iTXt chunk"); new_lang = NULL; lang_len = 0; } if (lang_key == NULL) lang_key_len = 0; else lang_key_len = png_strlen(lang_key); if (text == NULL) text_len = 0; else text_len = png_strlen(text); /* compute the compressed data; do it now for the length */ text_len = png_text_compress(png_ptr, text, text_len, compression-2, &comp); /* make sure we include the compression flag, the compression byte, * and the NULs after the key, lang, and lang_key parts */ png_write_chunk_start(png_ptr, png_iTXt, (png_uint_32)( 5 /* comp byte, comp flag, terminators for key, lang and lang_key */ + key_len + lang_len + lang_key_len + text_len)); /* * We leave it to the application to meet PNG-1.0 requirements on the * contents of the text. PNG-1.0 through PNG-1.2 discourage the use of * any non-Latin-1 characters except for NEWLINE. ISO PNG will forbid them. * The NUL character is forbidden by PNG-1.0 through PNG-1.2 and ISO PNG. */ png_write_chunk_data(png_ptr, (png_bytep)new_key, key_len + 1); /* set the compression flag */ if (compression == PNG_ITXT_COMPRESSION_NONE || \ compression == PNG_TEXT_COMPRESSION_NONE) cbuf[0] = 0; else /* compression == PNG_ITXT_COMPRESSION_zTXt */ cbuf[0] = 1; /* set the compression method */ cbuf[1] = 0; png_write_chunk_data(png_ptr, cbuf, 2); cbuf[0] = 0; png_write_chunk_data(png_ptr, (new_lang ? (png_bytep)new_lang : cbuf), lang_len + 1); png_write_chunk_data(png_ptr, (lang_key ? (png_bytep)lang_key : cbuf), lang_key_len + 1); png_write_compressed_data_out(png_ptr, &comp); png_write_chunk_end(png_ptr); png_free(png_ptr, new_key); png_free(png_ptr, new_lang); } #endif #if defined(PNG_WRITE_oFFs_SUPPORTED) /* write the oFFs chunk */ void /* PRIVATE */ png_write_oFFs(png_structp png_ptr, png_int_32 x_offset, png_int_32 y_offset, int unit_type) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_oFFs; #endif png_byte buf[9]; png_debug(1, "in png_write_oFFs\n"); if (unit_type >= PNG_OFFSET_LAST) png_warning(png_ptr, "Unrecognized unit type for oFFs chunk"); png_save_int_32(buf, x_offset); png_save_int_32(buf + 4, y_offset); buf[8] = (png_byte)unit_type; png_write_chunk(png_ptr, png_oFFs, buf, (png_size_t)9); } #endif #if defined(PNG_WRITE_pCAL_SUPPORTED) /* write the pCAL chunk (described in the PNG extensions document) */ void /* PRIVATE */ png_write_pCAL(png_structp png_ptr, png_charp purpose, png_int_32 X0, png_int_32 X1, int type, int nparams, png_charp units, png_charpp params) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_pCAL; #endif png_size_t purpose_len, units_len, total_len; png_uint_32p params_len; png_byte buf[10]; png_charp new_purpose; int i; png_debug1(1, "in png_write_pCAL (%d parameters)\n", nparams); if (type >= PNG_EQUATION_LAST) png_warning(png_ptr, "Unrecognized equation type for pCAL chunk"); purpose_len = png_check_keyword(png_ptr, purpose, &new_purpose) + 1; png_debug1(3, "pCAL purpose length = %d\n", (int)purpose_len); units_len = png_strlen(units) + (nparams == 0 ? 0 : 1); png_debug1(3, "pCAL units length = %d\n", (int)units_len); total_len = purpose_len + units_len + 10; params_len = (png_uint_32p)png_malloc(png_ptr, (png_uint_32)(nparams *png_sizeof(png_uint_32))); /* Find the length of each parameter, making sure we don't count the null terminator for the last parameter. */ for (i = 0; i < nparams; i++) { params_len[i] = png_strlen(params[i]) + (i == nparams - 1 ? 0 : 1); png_debug2(3, "pCAL parameter %d length = %lu\n", i, params_len[i]); total_len += (png_size_t)params_len[i]; } png_debug1(3, "pCAL total length = %d\n", (int)total_len); png_write_chunk_start(png_ptr, png_pCAL, (png_uint_32)total_len); png_write_chunk_data(png_ptr, (png_bytep)new_purpose, purpose_len); png_save_int_32(buf, X0); png_save_int_32(buf + 4, X1); buf[8] = (png_byte)type; buf[9] = (png_byte)nparams; png_write_chunk_data(png_ptr, buf, (png_size_t)10); png_write_chunk_data(png_ptr, (png_bytep)units, (png_size_t)units_len); png_free(png_ptr, new_purpose); for (i = 0; i < nparams; i++) { png_write_chunk_data(png_ptr, (png_bytep)params[i], (png_size_t)params_len[i]); } png_free(png_ptr, params_len); png_write_chunk_end(png_ptr); } #endif #if defined(PNG_WRITE_sCAL_SUPPORTED) /* write the sCAL chunk */ #if defined(PNG_FLOATING_POINT_SUPPORTED) && !defined(PNG_NO_STDIO) void /* PRIVATE */ png_write_sCAL(png_structp png_ptr, int unit, double width, double height) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_sCAL; #endif char buf[64]; png_size_t total_len; png_debug(1, "in png_write_sCAL\n"); buf[0] = (char)unit; #if defined(_WIN32_WCE) /* sprintf() function is not supported on WindowsCE */ { wchar_t wc_buf[32]; size_t wc_len; swprintf(wc_buf, TEXT("%12.12e"), width); wc_len = wcslen(wc_buf); WideCharToMultiByte(CP_ACP, 0, wc_buf, -1, buf + 1, wc_len, NULL, NULL); total_len = wc_len + 2; swprintf(wc_buf, TEXT("%12.12e"), height); wc_len = wcslen(wc_buf); WideCharToMultiByte(CP_ACP, 0, wc_buf, -1, buf + total_len, wc_len, NULL, NULL); total_len += wc_len; } #else png_snprintf(buf + 1, 63, "%12.12e", width); total_len = 1 + png_strlen(buf + 1) + 1; png_snprintf(buf + total_len, 64-total_len, "%12.12e", height); total_len += png_strlen(buf + total_len); #endif png_debug1(3, "sCAL total length = %u\n", (unsigned int)total_len); png_write_chunk(png_ptr, png_sCAL, (png_bytep)buf, total_len); } #else #ifdef PNG_FIXED_POINT_SUPPORTED void /* PRIVATE */ png_write_sCAL_s(png_structp png_ptr, int unit, png_charp width, png_charp height) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_sCAL; #endif png_byte buf[64]; png_size_t wlen, hlen, total_len; png_debug(1, "in png_write_sCAL_s\n"); wlen = png_strlen(width); hlen = png_strlen(height); total_len = wlen + hlen + 2; if (total_len > 64) { png_warning(png_ptr, "Can't write sCAL (buffer too small)"); return; } buf[0] = (png_byte)unit; png_memcpy(buf + 1, width, wlen + 1); /* append the '\0' here */ png_memcpy(buf + wlen + 2, height, hlen); /* do NOT append the '\0' here */ png_debug1(3, "sCAL total length = %u\n", (unsigned int)total_len); png_write_chunk(png_ptr, png_sCAL, buf, total_len); } #endif #endif #endif #if defined(PNG_WRITE_pHYs_SUPPORTED) /* write the pHYs chunk */ void /* PRIVATE */ png_write_pHYs(png_structp png_ptr, png_uint_32 x_pixels_per_unit, png_uint_32 y_pixels_per_unit, int unit_type) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_pHYs; #endif png_byte buf[9]; png_debug(1, "in png_write_pHYs\n"); if (unit_type >= PNG_RESOLUTION_LAST) png_warning(png_ptr, "Unrecognized unit type for pHYs chunk"); png_save_uint_32(buf, x_pixels_per_unit); png_save_uint_32(buf + 4, y_pixels_per_unit); buf[8] = (png_byte)unit_type; png_write_chunk(png_ptr, png_pHYs, buf, (png_size_t)9); } #endif #if defined(PNG_WRITE_tIME_SUPPORTED) /* Write the tIME chunk. Use either png_convert_from_struct_tm() * or png_convert_from_time_t(), or fill in the structure yourself. */ void /* PRIVATE */ png_write_tIME(png_structp png_ptr, png_timep mod_time) { #ifdef PNG_USE_LOCAL_ARRAYS PNG_tIME; #endif png_byte buf[7]; png_debug(1, "in png_write_tIME\n"); if (mod_time->month > 12 || mod_time->month < 1 || mod_time->day > 31 || mod_time->day < 1 || mod_time->hour > 23 || mod_time->second > 60) { png_warning(png_ptr, "Invalid time specified for tIME chunk"); return; } png_save_uint_16(buf, mod_time->year); buf[2] = mod_time->month; buf[3] = mod_time->day; buf[4] = mod_time->hour; buf[5] = mod_time->minute; buf[6] = mod_time->second; png_write_chunk(png_ptr, png_tIME, buf, (png_size_t)7); } #endif /* initializes the row writing capability of libpng */ void /* PRIVATE */ png_write_start_row(png_structp png_ptr) { #ifdef PNG_WRITE_INTERLACING_SUPPORTED #ifdef PNG_USE_LOCAL_ARRAYS /* arrays to facilitate easy interlacing - use pass (0 - 6) as index */ /* start of interlace block */ int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0}; /* offset to next interlace block */ int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1}; /* start of interlace block in the y direction */ int png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1}; /* offset to next interlace block in the y direction */ int png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2}; #endif #endif png_size_t buf_size; png_debug(1, "in png_write_start_row\n"); buf_size = (png_size_t)(PNG_ROWBYTES( png_ptr->usr_channels*png_ptr->usr_bit_depth,png_ptr->width)+1); /* set up row buffer */ png_ptr->row_buf = (png_bytep)png_malloc(png_ptr, (png_uint_32)buf_size); png_ptr->row_buf[0] = PNG_FILTER_VALUE_NONE; #ifndef PNG_NO_WRITE_FILTERING /* set up filtering buffer, if using this filter */ if (png_ptr->do_filter & PNG_FILTER_SUB) { png_ptr->sub_row = (png_bytep)png_malloc(png_ptr, (png_ptr->rowbytes + 1)); png_ptr->sub_row[0] = PNG_FILTER_VALUE_SUB; } /* We only need to keep the previous row if we are using one of these. */ if (png_ptr->do_filter & (PNG_FILTER_AVG | PNG_FILTER_UP | PNG_FILTER_PAETH)) { /* set up previous row buffer */ png_ptr->prev_row = (png_bytep)png_malloc(png_ptr, (png_uint_32)buf_size); png_memset(png_ptr->prev_row, 0, buf_size); if (png_ptr->do_filter & PNG_FILTER_UP) { png_ptr->up_row = (png_bytep)png_malloc(png_ptr, (png_ptr->rowbytes + 1)); png_ptr->up_row[0] = PNG_FILTER_VALUE_UP; } if (png_ptr->do_filter & PNG_FILTER_AVG) { png_ptr->avg_row = (png_bytep)png_malloc(png_ptr, (png_ptr->rowbytes + 1)); png_ptr->avg_row[0] = PNG_FILTER_VALUE_AVG; } if (png_ptr->do_filter & PNG_FILTER_PAETH) { png_ptr->paeth_row = (png_bytep)png_malloc(png_ptr, (png_ptr->rowbytes + 1)); png_ptr->paeth_row[0] = PNG_FILTER_VALUE_PAETH; } #endif /* PNG_NO_WRITE_FILTERING */ } #ifdef PNG_WRITE_INTERLACING_SUPPORTED /* if interlaced, we need to set up width and height of pass */ if (png_ptr->interlaced) { if (!(png_ptr->transformations & PNG_INTERLACE)) { png_ptr->num_rows = (png_ptr->height + png_pass_yinc[0] - 1 - png_pass_ystart[0]) / png_pass_yinc[0]; png_ptr->usr_width = (png_ptr->width + png_pass_inc[0] - 1 - png_pass_start[0]) / png_pass_inc[0]; } else { png_ptr->num_rows = png_ptr->height; png_ptr->usr_width = png_ptr->width; } } else #endif { png_ptr->num_rows = png_ptr->height; png_ptr->usr_width = png_ptr->width; } png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; png_ptr->zstream.next_out = png_ptr->zbuf; } /* Internal use only. Called when finished processing a row of data. */ void /* PRIVATE */ png_write_finish_row(png_structp png_ptr) { #ifdef PNG_WRITE_INTERLACING_SUPPORTED #ifdef PNG_USE_LOCAL_ARRAYS /* arrays to facilitate easy interlacing - use pass (0 - 6) as index */ /* start of interlace block */ int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0}; /* offset to next interlace block */ int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1}; /* start of interlace block in the y direction */ int png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1}; /* offset to next interlace block in the y direction */ int png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2}; #endif #endif int ret; png_debug(1, "in png_write_finish_row\n"); /* next row */ png_ptr->row_number++; /* see if we are done */ if (png_ptr->row_number < png_ptr->num_rows) return; #ifdef PNG_WRITE_INTERLACING_SUPPORTED /* if interlaced, go to next pass */ if (png_ptr->interlaced) { png_ptr->row_number = 0; if (png_ptr->transformations & PNG_INTERLACE) { png_ptr->pass++; } else { /* loop until we find a non-zero width or height pass */ do { png_ptr->pass++; if (png_ptr->pass >= 7) break; png_ptr->usr_width = (png_ptr->width + png_pass_inc[png_ptr->pass] - 1 - png_pass_start[png_ptr->pass]) / png_pass_inc[png_ptr->pass]; png_ptr->num_rows = (png_ptr->height + png_pass_yinc[png_ptr->pass] - 1 - png_pass_ystart[png_ptr->pass]) / png_pass_yinc[png_ptr->pass]; if (png_ptr->transformations & PNG_INTERLACE) break; } while (png_ptr->usr_width == 0 || png_ptr->num_rows == 0); } /* reset the row above the image for the next pass */ if (png_ptr->pass < 7) { if (png_ptr->prev_row != NULL) png_memset(png_ptr->prev_row, 0, (png_size_t)(PNG_ROWBYTES(png_ptr->usr_channels* png_ptr->usr_bit_depth,png_ptr->width))+1); return; } } #endif /* if we get here, we've just written the last row, so we need to flush the compressor */ do { /* tell the compressor we are done */ ret = deflate(&png_ptr->zstream, Z_FINISH); /* check for an error */ if (ret == Z_OK) { /* check to see if we need more room */ if (!(png_ptr->zstream.avail_out)) { png_write_IDAT(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size); png_ptr->zstream.next_out = png_ptr->zbuf; png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; } } else if (ret != Z_STREAM_END) { if (png_ptr->zstream.msg != NULL) png_error(png_ptr, png_ptr->zstream.msg); else png_error(png_ptr, "zlib error"); } } while (ret != Z_STREAM_END); /* write any extra space */ if (png_ptr->zstream.avail_out < png_ptr->zbuf_size) { png_write_IDAT(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size - png_ptr->zstream.avail_out); } deflateReset(&png_ptr->zstream); png_ptr->zstream.data_type = Z_BINARY; } #if defined(PNG_WRITE_INTERLACING_SUPPORTED) /* Pick out the correct pixels for the interlace pass. * The basic idea here is to go through the row with a source * pointer and a destination pointer (sp and dp), and copy the * correct pixels for the pass. As the row gets compacted, * sp will always be >= dp, so we should never overwrite anything. * See the default: case for the easiest code to understand. */ void /* PRIVATE */ png_do_write_interlace(png_row_infop row_info, png_bytep row, int pass) { #ifdef PNG_USE_LOCAL_ARRAYS /* arrays to facilitate easy interlacing - use pass (0 - 6) as index */ /* start of interlace block */ int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0}; /* offset to next interlace block */ int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1}; #endif png_debug(1, "in png_do_write_interlace\n"); /* we don't have to do anything on the last pass (6) */ #if defined(PNG_USELESS_TESTS_SUPPORTED) if (row != NULL && row_info != NULL && pass < 6) #else if (pass < 6) #endif { /* each pixel depth is handled separately */ switch (row_info->pixel_depth) { case 1: { png_bytep sp; png_bytep dp; int shift; int d; int value; png_uint_32 i; png_uint_32 row_width = row_info->width; dp = row; d = 0; shift = 7; for (i = png_pass_start[pass]; i < row_width; i += png_pass_inc[pass]) { sp = row + (png_size_t)(i >> 3); value = (int)(*sp >> (7 - (int)(i & 0x07))) & 0x01; d |= (value << shift); if (shift == 0) { shift = 7; *dp++ = (png_byte)d; d = 0; } else shift--; } if (shift != 7) *dp = (png_byte)d; break; } case 2: { png_bytep sp; png_bytep dp; int shift; int d; int value; png_uint_32 i; png_uint_32 row_width = row_info->width; dp = row; shift = 6; d = 0; for (i = png_pass_start[pass]; i < row_width; i += png_pass_inc[pass]) { sp = row + (png_size_t)(i >> 2); value = (*sp >> ((3 - (int)(i & 0x03)) << 1)) & 0x03; d |= (value << shift); if (shift == 0) { shift = 6; *dp++ = (png_byte)d; d = 0; } else shift -= 2; } if (shift != 6) *dp = (png_byte)d; break; } case 4: { png_bytep sp; png_bytep dp; int shift; int d; int value; png_uint_32 i; png_uint_32 row_width = row_info->width; dp = row; shift = 4; d = 0; for (i = png_pass_start[pass]; i < row_width; i += png_pass_inc[pass]) { sp = row + (png_size_t)(i >> 1); value = (*sp >> ((1 - (int)(i & 0x01)) << 2)) & 0x0f; d |= (value << shift); if (shift == 0) { shift = 4; *dp++ = (png_byte)d; d = 0; } else shift -= 4; } if (shift != 4) *dp = (png_byte)d; break; } default: { png_bytep sp; png_bytep dp; png_uint_32 i; png_uint_32 row_width = row_info->width; png_size_t pixel_bytes; /* start at the beginning */ dp = row; /* find out how many bytes each pixel takes up */ pixel_bytes = (row_info->pixel_depth >> 3); /* loop through the row, only looking at the pixels that matter */ for (i = png_pass_start[pass]; i < row_width; i += png_pass_inc[pass]) { /* find out where the original pixel is */ sp = row + (png_size_t)i * pixel_bytes; /* move the pixel */ if (dp != sp) png_memcpy(dp, sp, pixel_bytes); /* next pixel */ dp += pixel_bytes; } break; } } /* set new row width */ row_info->width = (row_info->width + png_pass_inc[pass] - 1 - png_pass_start[pass]) / png_pass_inc[pass]; row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth, row_info->width); } } #endif /* This filters the row, chooses which filter to use, if it has not already * been specified by the application, and then writes the row out with the * chosen filter. */ #define PNG_MAXSUM (((png_uint_32)(-1)) >> 1) #define PNG_HISHIFT 10 #define PNG_LOMASK ((png_uint_32)0xffffL) #define PNG_HIMASK ((png_uint_32)(~PNG_LOMASK >> PNG_HISHIFT)) void /* PRIVATE */ png_write_find_filter(png_structp png_ptr, png_row_infop row_info) { png_bytep best_row; #ifndef PNG_NO_WRITE_FILTER png_bytep prev_row, row_buf; png_uint_32 mins, bpp; png_byte filter_to_do = png_ptr->do_filter; png_uint_32 row_bytes = row_info->rowbytes; #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) int num_p_filters = (int)png_ptr->num_prev_filters; #endif png_debug(1, "in png_write_find_filter\n"); /* find out how many bytes offset each pixel is */ bpp = (row_info->pixel_depth + 7) >> 3; prev_row = png_ptr->prev_row; #endif best_row = png_ptr->row_buf; #ifndef PNG_NO_WRITE_FILTER row_buf = best_row; mins = PNG_MAXSUM; /* The prediction method we use is to find which method provides the * smallest value when summing the absolute values of the distances * from zero, using anything >= 128 as negative numbers. This is known * as the "minimum sum of absolute differences" heuristic. Other * heuristics are the "weighted minimum sum of absolute differences" * (experimental and can in theory improve compression), and the "zlib * predictive" method (not implemented yet), which does test compressions * of lines using different filter methods, and then chooses the * (series of) filter(s) that give minimum compressed data size (VERY * computationally expensive). * * GRR 980525: consider also * (1) minimum sum of absolute differences from running average (i.e., * keep running sum of non-absolute differences & count of bytes) * [track dispersion, too? restart average if dispersion too large?] * (1b) minimum sum of absolute differences from sliding average, probably * with window size <= deflate window (usually 32K) * (2) minimum sum of squared differences from zero or running average * (i.e., ~ root-mean-square approach) */ /* We don't need to test the 'no filter' case if this is the only filter * that has been chosen, as it doesn't actually do anything to the data. */ if ((filter_to_do & PNG_FILTER_NONE) && filter_to_do != PNG_FILTER_NONE) { png_bytep rp; png_uint_32 sum = 0; png_uint_32 i; int v; for (i = 0, rp = row_buf + 1; i < row_bytes; i++, rp++) { v = *rp; sum += (v < 128) ? v : 256 - v; } #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) { png_uint_32 sumhi, sumlo; int j; sumlo = sum & PNG_LOMASK; sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK; /* Gives us some footroom */ /* Reduce the sum if we match any of the previous rows */ for (j = 0; j < num_p_filters; j++) { if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_NONE) { sumlo = (sumlo * png_ptr->filter_weights[j]) >> PNG_WEIGHT_SHIFT; sumhi = (sumhi * png_ptr->filter_weights[j]) >> PNG_WEIGHT_SHIFT; } } /* Factor in the cost of this filter (this is here for completeness, * but it makes no sense to have a "cost" for the NONE filter, as * it has the minimum possible computational cost - none). */ sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_NONE]) >> PNG_COST_SHIFT; sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_NONE]) >> PNG_COST_SHIFT; if (sumhi > PNG_HIMASK) sum = PNG_MAXSUM; else sum = (sumhi << PNG_HISHIFT) + sumlo; } #endif mins = sum; } /* sub filter */ if (filter_to_do == PNG_FILTER_SUB) /* it's the only filter so no testing is needed */ { png_bytep rp, lp, dp; png_uint_32 i; for (i = 0, rp = row_buf + 1, dp = png_ptr->sub_row + 1; i < bpp; i++, rp++, dp++) { *dp = *rp; } for (lp = row_buf + 1; i < row_bytes; i++, rp++, lp++, dp++) { *dp = (png_byte)(((int)*rp - (int)*lp) & 0xff); } best_row = png_ptr->sub_row; } else if (filter_to_do & PNG_FILTER_SUB) { png_bytep rp, dp, lp; png_uint_32 sum = 0, lmins = mins; png_uint_32 i; int v; #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) /* We temporarily increase the "minimum sum" by the factor we * would reduce the sum of this filter, so that we can do the * early exit comparison without scaling the sum each time. */ if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) { int j; png_uint_32 lmhi, lmlo; lmlo = lmins & PNG_LOMASK; lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK; for (j = 0; j < num_p_filters; j++) { if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_SUB) { lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >> PNG_WEIGHT_SHIFT; lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >> PNG_WEIGHT_SHIFT; } } lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >> PNG_COST_SHIFT; lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >> PNG_COST_SHIFT; if (lmhi > PNG_HIMASK) lmins = PNG_MAXSUM; else lmins = (lmhi << PNG_HISHIFT) + lmlo; } #endif for (i = 0, rp = row_buf + 1, dp = png_ptr->sub_row + 1; i < bpp; i++, rp++, dp++) { v = *dp = *rp; sum += (v < 128) ? v : 256 - v; } for (lp = row_buf + 1; i < row_bytes; i++, rp++, lp++, dp++) { v = *dp = (png_byte)(((int)*rp - (int)*lp) & 0xff); sum += (v < 128) ? v : 256 - v; if (sum > lmins) /* We are already worse, don't continue. */ break; } #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) { int j; png_uint_32 sumhi, sumlo; sumlo = sum & PNG_LOMASK; sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK; for (j = 0; j < num_p_filters; j++) { if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_SUB) { sumlo = (sumlo * png_ptr->inv_filter_weights[j]) >> PNG_WEIGHT_SHIFT; sumhi = (sumhi * png_ptr->inv_filter_weights[j]) >> PNG_WEIGHT_SHIFT; } } sumlo = (sumlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >> PNG_COST_SHIFT; sumhi = (sumhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_SUB]) >> PNG_COST_SHIFT; if (sumhi > PNG_HIMASK) sum = PNG_MAXSUM; else sum = (sumhi << PNG_HISHIFT) + sumlo; } #endif if (sum < mins) { mins = sum; best_row = png_ptr->sub_row; } } /* up filter */ if (filter_to_do == PNG_FILTER_UP) { png_bytep rp, dp, pp; png_uint_32 i; for (i = 0, rp = row_buf + 1, dp = png_ptr->up_row + 1, pp = prev_row + 1; i < row_bytes; i++, rp++, pp++, dp++) { *dp = (png_byte)(((int)*rp - (int)*pp) & 0xff); } best_row = png_ptr->up_row; } else if (filter_to_do & PNG_FILTER_UP) { png_bytep rp, dp, pp; png_uint_32 sum = 0, lmins = mins; png_uint_32 i; int v; #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) { int j; png_uint_32 lmhi, lmlo; lmlo = lmins & PNG_LOMASK; lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK; for (j = 0; j < num_p_filters; j++) { if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_UP) { lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >> PNG_WEIGHT_SHIFT; lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >> PNG_WEIGHT_SHIFT; } } lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_UP]) >> PNG_COST_SHIFT; lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_UP]) >> PNG_COST_SHIFT; if (lmhi > PNG_HIMASK) lmins = PNG_MAXSUM; else lmins = (lmhi << PNG_HISHIFT) + lmlo; } #endif for (i = 0, rp = row_buf + 1, dp = png_ptr->up_row + 1, pp = prev_row + 1; i < row_bytes; i++) { v = *dp++ = (png_byte)(((int)*rp++ - (int)*pp++) & 0xff); sum += (v < 128) ? v : 256 - v; if (sum > lmins) /* We are already worse, don't continue. */ break; } #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) { int j; png_uint_32 sumhi, sumlo; sumlo = sum & PNG_LOMASK; sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK; for (j = 0; j < num_p_filters; j++) { if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_UP) { sumlo = (sumlo * png_ptr->filter_weights[j]) >> PNG_WEIGHT_SHIFT; sumhi = (sumhi * png_ptr->filter_weights[j]) >> PNG_WEIGHT_SHIFT; } } sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_UP]) >> PNG_COST_SHIFT; sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_UP]) >> PNG_COST_SHIFT; if (sumhi > PNG_HIMASK) sum = PNG_MAXSUM; else sum = (sumhi << PNG_HISHIFT) + sumlo; } #endif if (sum < mins) { mins = sum; best_row = png_ptr->up_row; } } /* avg filter */ if (filter_to_do == PNG_FILTER_AVG) { png_bytep rp, dp, pp, lp; png_uint_32 i; for (i = 0, rp = row_buf + 1, dp = png_ptr->avg_row + 1, pp = prev_row + 1; i < bpp; i++) { *dp++ = (png_byte)(((int)*rp++ - ((int)*pp++ / 2)) & 0xff); } for (lp = row_buf + 1; i < row_bytes; i++) { *dp++ = (png_byte)(((int)*rp++ - (((int)*pp++ + (int)*lp++) / 2)) & 0xff); } best_row = png_ptr->avg_row; } else if (filter_to_do & PNG_FILTER_AVG) { png_bytep rp, dp, pp, lp; png_uint_32 sum = 0, lmins = mins; png_uint_32 i; int v; #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) { int j; png_uint_32 lmhi, lmlo; lmlo = lmins & PNG_LOMASK; lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK; for (j = 0; j < num_p_filters; j++) { if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_AVG) { lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >> PNG_WEIGHT_SHIFT; lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >> PNG_WEIGHT_SHIFT; } } lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_AVG]) >> PNG_COST_SHIFT; lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_AVG]) >> PNG_COST_SHIFT; if (lmhi > PNG_HIMASK) lmins = PNG_MAXSUM; else lmins = (lmhi << PNG_HISHIFT) + lmlo; } #endif for (i = 0, rp = row_buf + 1, dp = png_ptr->avg_row + 1, pp = prev_row + 1; i < bpp; i++) { v = *dp++ = (png_byte)(((int)*rp++ - ((int)*pp++ / 2)) & 0xff); sum += (v < 128) ? v : 256 - v; } for (lp = row_buf + 1; i < row_bytes; i++) { v = *dp++ = (png_byte)(((int)*rp++ - (((int)*pp++ + (int)*lp++) / 2)) & 0xff); sum += (v < 128) ? v : 256 - v; if (sum > lmins) /* We are already worse, don't continue. */ break; } #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) { int j; png_uint_32 sumhi, sumlo; sumlo = sum & PNG_LOMASK; sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK; for (j = 0; j < num_p_filters; j++) { if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_NONE) { sumlo = (sumlo * png_ptr->filter_weights[j]) >> PNG_WEIGHT_SHIFT; sumhi = (sumhi * png_ptr->filter_weights[j]) >> PNG_WEIGHT_SHIFT; } } sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_AVG]) >> PNG_COST_SHIFT; sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_AVG]) >> PNG_COST_SHIFT; if (sumhi > PNG_HIMASK) sum = PNG_MAXSUM; else sum = (sumhi << PNG_HISHIFT) + sumlo; } #endif if (sum < mins) { mins = sum; best_row = png_ptr->avg_row; } } /* Paeth filter */ if (filter_to_do == PNG_FILTER_PAETH) { png_bytep rp, dp, pp, cp, lp; png_uint_32 i; for (i = 0, rp = row_buf + 1, dp = png_ptr->paeth_row + 1, pp = prev_row + 1; i < bpp; i++) { *dp++ = (png_byte)(((int)*rp++ - (int)*pp++) & 0xff); } for (lp = row_buf + 1, cp = prev_row + 1; i < row_bytes; i++) { int a, b, c, pa, pb, pc, p; b = *pp++; c = *cp++; a = *lp++; p = b - c; pc = a - c; #ifdef PNG_USE_ABS pa = abs(p); pb = abs(pc); pc = abs(p + pc); #else pa = p < 0 ? -p : p; pb = pc < 0 ? -pc : pc; pc = (p + pc) < 0 ? -(p + pc) : p + pc; #endif p = (pa <= pb && pa <=pc) ? a : (pb <= pc) ? b : c; *dp++ = (png_byte)(((int)*rp++ - p) & 0xff); } best_row = png_ptr->paeth_row; } else if (filter_to_do & PNG_FILTER_PAETH) { png_bytep rp, dp, pp, cp, lp; png_uint_32 sum = 0, lmins = mins; png_uint_32 i; int v; #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) { int j; png_uint_32 lmhi, lmlo; lmlo = lmins & PNG_LOMASK; lmhi = (lmins >> PNG_HISHIFT) & PNG_HIMASK; for (j = 0; j < num_p_filters; j++) { if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_PAETH) { lmlo = (lmlo * png_ptr->inv_filter_weights[j]) >> PNG_WEIGHT_SHIFT; lmhi = (lmhi * png_ptr->inv_filter_weights[j]) >> PNG_WEIGHT_SHIFT; } } lmlo = (lmlo * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_PAETH]) >> PNG_COST_SHIFT; lmhi = (lmhi * png_ptr->inv_filter_costs[PNG_FILTER_VALUE_PAETH]) >> PNG_COST_SHIFT; if (lmhi > PNG_HIMASK) lmins = PNG_MAXSUM; else lmins = (lmhi << PNG_HISHIFT) + lmlo; } #endif for (i = 0, rp = row_buf + 1, dp = png_ptr->paeth_row + 1, pp = prev_row + 1; i < bpp; i++) { v = *dp++ = (png_byte)(((int)*rp++ - (int)*pp++) & 0xff); sum += (v < 128) ? v : 256 - v; } for (lp = row_buf + 1, cp = prev_row + 1; i < row_bytes; i++) { int a, b, c, pa, pb, pc, p; b = *pp++; c = *cp++; a = *lp++; #ifndef PNG_SLOW_PAETH p = b - c; pc = a - c; #ifdef PNG_USE_ABS pa = abs(p); pb = abs(pc); pc = abs(p + pc); #else pa = p < 0 ? -p : p; pb = pc < 0 ? -pc : pc; pc = (p + pc) < 0 ? -(p + pc) : p + pc; #endif p = (pa <= pb && pa <=pc) ? a : (pb <= pc) ? b : c; #else /* PNG_SLOW_PAETH */ p = a + b - c; pa = abs(p - a); pb = abs(p - b); pc = abs(p - c); if (pa <= pb && pa <= pc) p = a; else if (pb <= pc) p = b; else p = c; #endif /* PNG_SLOW_PAETH */ v = *dp++ = (png_byte)(((int)*rp++ - p) & 0xff); sum += (v < 128) ? v : 256 - v; if (sum > lmins) /* We are already worse, don't continue. */ break; } #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) if (png_ptr->heuristic_method == PNG_FILTER_HEURISTIC_WEIGHTED) { int j; png_uint_32 sumhi, sumlo; sumlo = sum & PNG_LOMASK; sumhi = (sum >> PNG_HISHIFT) & PNG_HIMASK; for (j = 0; j < num_p_filters; j++) { if (png_ptr->prev_filters[j] == PNG_FILTER_VALUE_PAETH) { sumlo = (sumlo * png_ptr->filter_weights[j]) >> PNG_WEIGHT_SHIFT; sumhi = (sumhi * png_ptr->filter_weights[j]) >> PNG_WEIGHT_SHIFT; } } sumlo = (sumlo * png_ptr->filter_costs[PNG_FILTER_VALUE_PAETH]) >> PNG_COST_SHIFT; sumhi = (sumhi * png_ptr->filter_costs[PNG_FILTER_VALUE_PAETH]) >> PNG_COST_SHIFT; if (sumhi > PNG_HIMASK) sum = PNG_MAXSUM; else sum = (sumhi << PNG_HISHIFT) + sumlo; } #endif if (sum < mins) { best_row = png_ptr->paeth_row; } } #endif /* PNG_NO_WRITE_FILTER */ /* Do the actual writing of the filtered row data from the chosen filter. */ png_write_filtered_row(png_ptr, best_row); #ifndef PNG_NO_WRITE_FILTER #if defined(PNG_WRITE_WEIGHTED_FILTER_SUPPORTED) /* Save the type of filter we picked this time for future calculations */ if (png_ptr->num_prev_filters > 0) { int j; for (j = 1; j < num_p_filters; j++) { png_ptr->prev_filters[j] = png_ptr->prev_filters[j - 1]; } png_ptr->prev_filters[j] = best_row[0]; } #endif #endif /* PNG_NO_WRITE_FILTER */ } /* Do the actual writing of a previously filtered row. */ void /* PRIVATE */ png_write_filtered_row(png_structp png_ptr, png_bytep filtered_row) { png_debug(1, "in png_write_filtered_row\n"); png_debug1(2, "filter = %d\n", filtered_row[0]); /* set up the zlib input buffer */ png_ptr->zstream.next_in = filtered_row; png_ptr->zstream.avail_in = (uInt)png_ptr->row_info.rowbytes + 1; /* repeat until we have compressed all the data */ do { int ret; /* return of zlib */ /* compress the data */ ret = deflate(&png_ptr->zstream, Z_NO_FLUSH); /* check for compression errors */ if (ret != Z_OK) { if (png_ptr->zstream.msg != NULL) png_error(png_ptr, png_ptr->zstream.msg); else png_error(png_ptr, "zlib error"); } /* see if it is time to write another IDAT */ if (!(png_ptr->zstream.avail_out)) { /* write the IDAT and reset the zlib output buffer */ png_write_IDAT(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size); png_ptr->zstream.next_out = png_ptr->zbuf; png_ptr->zstream.avail_out = (uInt)png_ptr->zbuf_size; } /* repeat until all data has been compressed */ } while (png_ptr->zstream.avail_in); /* swap the current and previous rows */ if (png_ptr->prev_row != NULL) { png_bytep tptr; tptr = png_ptr->prev_row; png_ptr->prev_row = png_ptr->row_buf; png_ptr->row_buf = tptr; } /* finish row - updates counters and flushes zlib if last row */ png_write_finish_row(png_ptr); #if defined(PNG_WRITE_FLUSH_SUPPORTED) png_ptr->flush_rows++; if (png_ptr->flush_dist > 0 && png_ptr->flush_rows >= png_ptr->flush_dist) { png_write_flush(png_ptr); } #endif } #endif /* PNG_WRITE_SUPPORTED */