Mercurial > fife-parpg
view engine/core/util/math/matrix.h @ 621:356634098bd9
* Removed the image chunking size variable from engine settings.
* Replaced the existing define of PI and added some math related static const variables
author | prock@33b003aa-7bff-0310-803a-e67f0ece8222 |
---|---|
date | Fri, 01 Oct 2010 14:09:47 +0000 |
parents | 16c2b3ee59ce |
children | 07b1cf8e92b5 |
line wrap: on
line source
/*************************************************************************** * Copyright (C) 2005-2008 by the FIFE team * * http://www.fifengine.de * * This file is part of FIFE. * * * * FIFE is free software; you can redistribute it and/or * * modify it under the terms of the GNU Lesser General Public * * License as published by the Free Software Foundation; either * * version 2.1 of the License, or (at your option) any later version. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * * Lesser General Public License for more details. * * * * You should have received a copy of the GNU Lesser General Public * * License along with this library; if not, write to the * * Free Software Foundation, Inc., * * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * ***************************************************************************/ /*************************************************************************** * Includes some heavy copying from mathgl-pp project * * (http://sourceforge.net/projects/mathgl-pp/) * ***************************************************************************/ #ifndef FIFE_UTIL_MATRIX_H #define FIFE_UTIL_MATRIX_H // Standard C++ library includes #include <cassert> #include <iostream> // Platform specific includes // 3rd party library includes // FIFE includes // These includes are split up in two parts, separated by one empty line // First block: files included from the FIFE root src directory // Second block: files included from the same folder #include "util/base/fife_stdint.h" #include "util/structures/point.h" #include "fife_math.h" namespace FIFE { /** Minimal matrix class to assist in view 3d calculations */ template <typename T> class Matrix { public: Matrix<T>() {} template <typename U> friend class Matrix; template <typename U> Matrix<T>(const Matrix<U>& mat) { memmove(m, mat.m, 16*sizeof(T)); } ~Matrix() {} /** Adjoint method inverse, constant time inversion implementation */ Matrix inverse() const { Matrix ret(adjoint()); T determinant = m0*ret[0] + m1*ret[4] + m2*ret[8] + m3*ret[12]; assert(determinant!=0 && "Singular matrix has no inverse"); ret/=determinant; return ret; } /** Divide this matrix by a scalar */ inline Matrix& operator/= (T val) { for (register unsigned i = 0; i < 16; ++i) m[i] /= val; return *this; } /** Get the adjoint matrix */ Matrix adjoint() const { Matrix ret; ret[0] = cofactorm0(); ret[1] = -cofactorm4(); ret[2] = cofactorm8(); ret[3] = -cofactorm12(); ret[4] = -cofactorm1(); ret[5] = cofactorm5(); ret[6] = -cofactorm9(); ret[7] = cofactorm13(); ret[8] = cofactorm2(); ret[9] = -cofactorm6(); ret[10] = cofactorm10(); ret[11] = -cofactorm14(); ret[12] = -cofactorm3(); ret[13] = cofactorm7(); ret[14] = -cofactorm11(); ret[15] = cofactorm15(); return ret; } /** Make this a rotation matrix */ inline Matrix& loadRotate(T angle, T x, T y, T z) { register T magSqr = x*x + y*y + z*z; if (magSqr != 1.0) { register T mag = sqrt(magSqr); x/=mag; y/=mag; z/=mag; } T c = cos(angle*DBL_PI/180); T s = sin(angle*DBL_PI/180); m0 = x*x*(1-c)+c; m1 = y*x*(1-c)+z*s; m2 = z*x*(1-c)-y*s; m3 = 0; m4 = x*y*(1-c)-z*s; m5 = y*y*(1-c)+c; m6 = z*y*(1-c)+x*s; m7 = 0; m8 = x*z*(1-c)+y*s; m9 = y*z*(1-c)-x*s; m10 = z*z*(1-c)+c; m11 = 0; m12 = 0; m13 = 0; m14 = 0; m15 = 1; return *this; } /** Apply scale into this matrix */ inline Matrix& applyScale(T x, T y, T z) { static Matrix<T> temp; temp.loadScale(x,y,z); *this = temp.mult4by4(*this); return *this; } /** Make this a scale matrix */ inline Matrix& loadScale(T x, T y, T z = 1) { m0 = x; m4 = 0; m8 = 0; m12 = 0; m1 = 0; m5 = y; m9 = 0; m13 = 0; m2 = 0; m6 = 0; m10 = z; m14 = 0; m3 = 0; m7 = 0; m11 = 0; m15 = 1; return *this; } /** Apply translation into this matrix */ inline Matrix& applyTranslate(T x, T y, T z) { static Matrix<T> temp; temp.loadTranslate(x,y,z); *this = temp.mult4by4(*this); return *this; } /** Make this a translation matrix */ inline Matrix& loadTranslate( const T x, const T y, const T z) { m0 = 1; m4 = 0; m8 = 0; m12 = x; m1 = 0; m5 = 1; m9 = 0; m13 = y; m2 = 0; m6 = 0; m10 = 1; m14 = z; m3 = 0; m7 = 0; m11 = 0; m15 = 1; return *this; } /** Transform given point using this matrix */ inline PointType3D<T> operator* (const PointType3D<T>& vec) { return PointType3D<T> ( vec.x * m0 + vec.y * m4 + vec.z * m8 + m12, vec.x * m1 + vec.y * m5 + vec.z * m9 + m13, vec.x * m2 + vec.y * m6 + vec.z * m10 + m14 ); } /** Direct access to the matrix elements, just remember they are in column major format!! */ inline T& operator[] (int ind) { assert(ind > -1 && ind < 16); return m[ind]; } inline const T& operator[] (int ind) const { assert(ind > -1 && ind < 16); return m[ind]; } /** Apply the matrix dot product to this matrix */ inline Matrix& mult3by3(const Matrix& mat) { Matrix temp(*this); m0 = temp.m0*mat.m0+temp.m4*mat.m1+temp.m8*mat.m2; m4 = temp.m0*mat.m4+temp.m4*mat.m5+temp.m8*mat.m6; m8 = temp.m0*mat.m8+temp.m4*mat.m9+temp.m8*mat.m10; m1 = temp.m1*mat.m0+temp.m5*mat.m1+temp.m9*mat.m2; m5 = temp.m1*mat.m4+temp.m5*mat.m5+temp.m9*mat.m6; m9 = temp.m1*mat.m8+temp.m5*mat.m9+temp.m9*mat.m10; m2 = temp.m2*mat.m0+temp.m6*mat.m1+temp.m10*mat.m2; m6 = temp.m2*mat.m4+temp.m6*mat.m5+temp.m10*mat.m6; m10 = temp.m2*mat.m8+temp.m6*mat.m9+temp.m10*mat.m10; m3 = temp.m3*mat.m0+temp.m7*mat.m1+temp.m11*mat.m2; m7 = temp.m3*mat.m4+temp.m7*mat.m5+temp.m11*mat.m6; m11 = temp.m3*mat.m8+temp.m7*mat.m9+temp.m11*mat.m10; return *this; } /** this->Rmult4by4(temp) == [temp] X [*this] **/ /** also equal to temp->mult4by4(*this) **/ inline Matrix<T>& Rmult4by4(const Matrix<T>& mat) { Matrix temp(*this); m0 = mat.m0*temp.m0+mat.m4*temp.m1+mat.m8*temp.m2+mat.m12*temp.m3; m4 = mat.m0*temp.m4+mat.m4*temp.m5+mat.m8*temp.m6+mat.m12*temp.m7; m8 = mat.m0*temp.m8+mat.m4*temp.m9+mat.m8*temp.m10+mat.m12*temp.m11; m12 = mat.m0*temp.m12+mat.m4*temp.m13+mat.m8*temp.m14+mat.m12*temp.m15; m1 = mat.m1*temp.m0 + mat.m5*temp.m1 + mat.m9*temp.m2+mat.m13*temp.m3; m5 = mat.m1*temp.m4 + mat.m5*temp.m5 + mat.m9*temp.m6+mat.m13*temp.m7; m9 = mat.m1*temp.m8 + mat.m5*temp.m9 + mat.m9*temp.m10+mat.m13*temp.m11; m13 = mat.m1*temp.m12+ mat.m5*temp.m13 + mat.m9*temp.m14+mat.m13*temp.m15; m2 = mat.m2*temp.m0+mat.m6*temp.m1+mat.m10*temp.m2+mat.m14*temp.m3; m6 = mat.m2*temp.m4+mat.m6*temp.m5+mat.m10*temp.m6+mat.m14*temp.m7; m10 = mat.m2*temp.m8+mat.m6*temp.m9+mat.m10*temp.m10+mat.m14*temp.m11; m14 = mat.m2*temp.m12+mat.m6*temp.m13+mat.m10*temp.m14+mat.m14*temp.m15; m3 = mat.m3*temp.m0+mat.m7*temp.m1+mat.m11*temp.m2+mat.m15*temp.m3; m7 = mat.m3*temp.m4+mat.m7*temp.m5+mat.m11*temp.m6+mat.m15*temp.m7; m11 = mat.m3*temp.m8+mat.m7*temp.m9+mat.m11*temp.m10+mat.m15*temp.m11; m15 = mat.m3*temp.m12+mat.m7*temp.m13+mat.m11*temp.m14+mat.m15*temp.m15; return *this; } inline Matrix<T>& mult4by4(const Matrix<T>& mat) { Matrix temp(*this); m0 = temp.m0*mat.m0+temp.m4*mat.m1+temp.m8*mat.m2+temp.m12*mat.m3; m4 = temp.m0*mat.m4+temp.m4*mat.m5+temp.m8*mat.m6+temp.m12*mat.m7; m8 = temp.m0*mat.m8+temp.m4*mat.m9+temp.m8*mat.m10+temp.m12*mat.m11; m12 = temp.m0*mat.m12+temp.m4*mat.m13+temp.m8*mat.m14+temp.m12*mat.m15; m1 = temp.m1*mat.m0 + temp.m5*mat.m1 + temp.m9*mat.m2+temp.m13*mat.m3; m5 = temp.m1*mat.m4 + temp.m5*mat.m5 + temp.m9*mat.m6+temp.m13*mat.m7; m9 = temp.m1*mat.m8 + temp.m5*mat.m9 + temp.m9*mat.m10+temp.m13*mat.m11; m13 = temp.m1*mat.m12+ temp.m5*mat.m13 + temp.m9*mat.m14+temp.m13*mat.m15; m2 = temp.m2*mat.m0+temp.m6*mat.m1+temp.m10*mat.m2+temp.m14*mat.m3; m6 = temp.m2*mat.m4+temp.m6*mat.m5+temp.m10*mat.m6+temp.m14*mat.m7; m10 = temp.m2*mat.m8+temp.m6*mat.m9+temp.m10*mat.m10+temp.m14*mat.m11; m14 = temp.m2*mat.m12+temp.m6*mat.m13+temp.m10*mat.m14+temp.m14*mat.m15; m3 = temp.m3*mat.m0+temp.m7*mat.m1+temp.m11*mat.m2+temp.m15*mat.m3; m7 = temp.m3*mat.m4+temp.m7*mat.m5+temp.m11*mat.m6+temp.m15*mat.m7; m11 = temp.m3*mat.m8+temp.m7*mat.m9+temp.m11*mat.m10+temp.m15*mat.m11; m15 = temp.m3*mat.m12+temp.m7*mat.m13+temp.m11*mat.m14+temp.m15*mat.m15; return *this; } Matrix& applyRotate(T angle, T x, T y, T z) { static Matrix<T> temp; temp.loadRotate(angle,x,y,z); *this = temp.mult4by4(*this); return *this; } private: #define cofactor_maker(f1,mj1,mi1, f2,mj2,mi2, f3,mj3,mi3) \ f1*(mj1*mi1-mj2*mi3) + f2*(mj2*mi2-mj3*mi1) + f3*(mj3*mi3-mj1*mi2) inline T cofactorm0() const { return cofactor_maker(m5,m10,m15, m6,m11,m13, m7,m9,m14); } inline T cofactorm1() const { return cofactor_maker(m6,m11,m12, m7,m8,m14, m4,m10,m15); } inline T cofactorm2() const { return cofactor_maker(m7,m8,m13, m4,m9,m15, m5,m11,m12); } inline T cofactorm3() const { return cofactor_maker(m4,m9,m14, m5,m10,m12, m6,m8,m13); } inline T cofactorm4() const { return cofactor_maker(m9,m14,m3, m10,m15,m1, m11,m13,m2); } inline T cofactorm5() const { return cofactor_maker(m10,m15,m0, m11,m12,m2, m8,m14,m3); } inline T cofactorm6() const { return cofactor_maker(m11,m12,m1, m8,m13,m3, m9,m15,m0); } inline T cofactorm7() const { return cofactor_maker(m8,m13,m2, m9,m14,m0, m10,m12,m1); } inline T cofactorm8() const { return cofactor_maker(m13,m2,m7, m14,m3,m5, m15,m1,m6); } inline T cofactorm9() const { return cofactor_maker(m14,m13,m4, m15,m0,m6, m12,m2,m7); } inline T cofactorm10() const { return cofactor_maker(m15,m0,m5, m12,m1,m7, m13,m3,m4); } inline T cofactorm11() const { return cofactor_maker(m12,m1,m6, m13,m2,m4, m14,m0,m5); } inline T cofactorm12() const { return cofactor_maker(m1,m6,m11, m2,m7,m9, m3,m5,m10); } inline T cofactorm13() const { return cofactor_maker(m2,m7,m8, m3,m4,m10, m10,m6,m11); } inline T cofactorm14() const { return cofactor_maker(m3,m4,m9, m0,m5,m11, m1,m7,m8); } inline T cofactorm15() const { return cofactor_maker(m0,m5,m10, m1,m6,m8, m2,m4,m9); } union { T m[16]; struct { T m0,m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12,m13,m14,m15; }; }; }; typedef Matrix<double> DoubleMatrix; typedef Matrix<int> IntMatrix; /** Print coords of the Matrix to a stream */ template<typename T> std::ostream& operator<<(std::ostream& os, const Matrix<T>& m) { return os << "\n|" << m[0] << "," << m[4] << "," << m[8] << "," << m[12] << "|\n" << \ "|" << m[1] << "," << m[5] << "," << m[9] << "," << m[13] << "|\n" << \ "|" << m[2] << "," << m[6] << "," << m[10] << "," << m[14] << "|\n" << \ "|" << m[3] << "," << m[7] << "," << m[11] << "," << m[15] << "|\n"; } } #endif