Mercurial > fife-parpg
view engine/core/model/metamodel/grids/hexgrid.cpp @ 621:356634098bd9
* Removed the image chunking size variable from engine settings.
* Replaced the existing define of PI and added some math related static const variables
author | prock@33b003aa-7bff-0310-803a-e67f0ece8222 |
---|---|
date | Fri, 01 Oct 2010 14:09:47 +0000 |
parents | 90005975cdbb |
children | 07b1cf8e92b5 |
line wrap: on
line source
/*************************************************************************** * Copyright (C) 2005-2008 by the FIFE team * * http://www.fifengine.de * * This file is part of FIFE. * * * * FIFE is free software; you can redistribute it and/or * * modify it under the terms of the GNU Lesser General Public * * License as published by the Free Software Foundation; either * * version 2.1 of the License, or (at your option) any later version. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * * Lesser General Public License for more details. * * * * You should have received a copy of the GNU Lesser General Public * * License along with this library; if not, write to the * * Free Software Foundation, Inc., * * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * ***************************************************************************/ // Standard C++ library includes #include <cassert> // 3rd party library includes // FIFE includes // These includes are split up in two parts, separated by one empty line // First block: files included from the FIFE root src directory // Second block: files included from the same folder #include "util/math/fife_math.h" #include "util/log/logger.h" #include "hexgrid.h" namespace FIFE { static Logger _log(LM_HEXGRID); static const double HEX_WIDTH = 1; static const double HEX_TO_EDGE = HEX_WIDTH / 2; static const double HEX_TO_CORNER = 0.5 / cos(DBL_PI / 6); static const double HEX_EDGE_HALF = HEX_TO_CORNER * sin(DBL_PI / 6); static const double VERTICAL_MULTIP = sqrt(HEX_WIDTH*HEX_WIDTH - HEX_TO_EDGE*HEX_TO_EDGE); static const double VERTICAL_MULTIP_INV = 1 / VERTICAL_MULTIP; HexGrid::HexGrid(bool allow_diagonals): CellGrid(allow_diagonals) { FL_DBG(_log, "Constructing new HexGrid"); FL_DBG(_log, LMsg("HEX_WIDTH ") << HEX_WIDTH); FL_DBG(_log, LMsg("HEX_TO_EDGE ") << HEX_TO_EDGE); FL_DBG(_log, LMsg("HEX_TO_CORNER ") << HEX_TO_CORNER); FL_DBG(_log, LMsg("HEX_EDGE_HALF ") << HEX_EDGE_HALF); FL_DBG(_log, LMsg("VERTICAL_MULTIP ") << VERTICAL_MULTIP); } CellGrid* HexGrid::clone() { return new HexGrid(this); } HexGrid::~HexGrid() { } bool HexGrid::isAccessible(const ModelCoordinate& curpos, const ModelCoordinate& target) { if (curpos == target) { return true; } if(curpos.y % 2) { if((curpos.x == target.x) && (curpos.y - 1 == target.y)) { return true; } if((curpos.x + 1 == target.x) && (curpos.y - 1 == target.y)) { return true; } if((curpos.x + 1 == target.x) && (curpos.y == target.y)) { return true; } if((curpos.x + 1 == target.x) && (curpos.y + 1 == target.y)) { return true; } if((curpos.x == target.x) && (curpos.y + 1 == target.y)) { return true; } if((curpos.x - 1 == target.x) && (curpos.y == target.y)) { return true; } } else { if((curpos.x - 1 == target.x) && (curpos.y - 1 == target.y)) { return true; } if((curpos.x == target.x) && (curpos.y - 1 == target.y)) { return true; } if((curpos.x + 1 == target.x) && (curpos.y == target.y)) { return true; } if((curpos.x == target.x) && (curpos.y + 1 == target.y)) { return true; } if((curpos.x - 1 == target.x) && (curpos.y + 1 == target.y)) { return true; } if((curpos.x - 1 == target.x) && (curpos.y == target.y)) { return true; } } return false; } float HexGrid::getAdjacentCost(const ModelCoordinate& curpos, const ModelCoordinate& target) { assert(isAccessible(curpos, target)); if (curpos == target) { return 0; } else if (curpos.y == target.y) { return m_xscale; } else { double a = VERTICAL_MULTIP * m_yscale; double b = HEX_TO_EDGE * m_xscale; return sqrt((a * a) + (b * b)); } } const std::string& HexGrid::getType() const { static std::string type("hexagonal"); return type; } const std::string& HexGrid::getName() const { static std::string hexGrid("Hex Grid"); return hexGrid; } double HexGrid::getXZigzagOffset(double y) { // each uneven row has shifted coordinate of 0.5 horizontally // shift has to be gradual on vertical axis double ay = ABS(y); int i_layer_y = static_cast<int>(ay); double offset = ay - static_cast<double>(i_layer_y); if ((i_layer_y % 2) == 1) { offset = 1 - offset; } return HEX_TO_EDGE * offset; } ExactModelCoordinate HexGrid::toMapCoordinates(const ExactModelCoordinate& layer_coords) { ExactModelCoordinate tranformed_coords(layer_coords); tranformed_coords.x += getXZigzagOffset(layer_coords.y); tranformed_coords.y *= VERTICAL_MULTIP; ExactModelCoordinate result = m_matrix * tranformed_coords; FL_DBG(_log, LMsg("layercoords ") << layer_coords << " converted to map: " << result); return result; } ExactModelCoordinate HexGrid::toExactLayerCoordinates(const ExactModelCoordinate& map_coord) { ExactModelCoordinate layer_coords = m_inverse_matrix * map_coord; layer_coords.y /= VERTICAL_MULTIP; layer_coords.x -= getXZigzagOffset(layer_coords.y); FL_DBG(_log, LMsg("mapcoords ") << map_coord << " converted to layer: " << layer_coords); return layer_coords; } ModelCoordinate HexGrid::toLayerCoordinates(const ExactModelCoordinate& map_coord) { FL_DBG(_log, LMsg("==============\nConverting map coords ") << map_coord << " to int layer coords..."); ExactModelCoordinate elc = m_inverse_matrix * map_coord; elc.y *= VERTICAL_MULTIP_INV; ExactModelCoordinate lc = ExactModelCoordinate(floor(elc.x), floor(elc.y)); double dx = elc.x - lc.x; double dy = elc.y - lc.y; int x = static_cast<int>(lc.x); int y = static_cast<int>(lc.y); FL_DBG(_log, LMsg("elc=") << elc << ", lc=" << lc); FL_DBG(_log, LMsg("x=") << x << ", y=" << y << ", dx=" << dx << ", dy=" << dy); ModelCoordinate result; if ((y % 2) == 0) { FL_DBG(_log, "In even row"); if ((1 - dy) < HEX_EDGE_HALF) { FL_DBG(_log, "In lower rect area"); result = ModelCoordinate(x, y+1); } else if (dy < HEX_EDGE_HALF) { FL_DBG(_log, "In upper rect area"); if (dx > 0.5) { FL_DBG(_log, "...on right"); result = ModelCoordinate(x+1, y); } else { FL_DBG(_log, "...on left"); result = ModelCoordinate(x, y); } } // in middle triangle area else { FL_DBG(_log, "In middle triangle area"); if (dx < 0.5) { FL_DBG(_log, "In left triangles"); if (ptInTriangle(ExactModelCoordinate(dx, dy), ExactModelCoordinate(0, VERTICAL_MULTIP * HEX_EDGE_HALF), ExactModelCoordinate(0, VERTICAL_MULTIP * (1-HEX_EDGE_HALF)), ExactModelCoordinate(0.5, VERTICAL_MULTIP * HEX_EDGE_HALF) )) { FL_DBG(_log, "..upper part"); result = ModelCoordinate(x, y); } else { FL_DBG(_log, "..lower part"); result = ModelCoordinate(x, y+1); } } else { FL_DBG(_log, "In right triangles"); if (ptInTriangle(ExactModelCoordinate(dx, dy), ExactModelCoordinate(1, VERTICAL_MULTIP * HEX_EDGE_HALF), ExactModelCoordinate(1, VERTICAL_MULTIP * (1-HEX_EDGE_HALF)), ExactModelCoordinate(0.5, VERTICAL_MULTIP * HEX_EDGE_HALF) )) { FL_DBG(_log, "..upper part"); result = ModelCoordinate(x+1, y); } else { FL_DBG(_log, "..lower part"); result = ModelCoordinate(x, y+1); } } } } else { FL_DBG(_log, "In uneven row"); if (dy < HEX_EDGE_HALF) { FL_DBG(_log, "In upper rect area"); result = ModelCoordinate(x, y); } else if ((1 - dy) < HEX_EDGE_HALF) { FL_DBG(_log, "In lower rect area"); if (dx > 0.5) { FL_DBG(_log, "...on right"); result = ModelCoordinate(x+1, y+1); } else { FL_DBG(_log, "...on left"); result = ModelCoordinate(x, y+1); } } else { FL_DBG(_log, "In middle triangle area"); if (dx < 0.5) { FL_DBG(_log, "In left triangles"); if (ptInTriangle(ExactModelCoordinate(dx, dy), ExactModelCoordinate(0, VERTICAL_MULTIP * HEX_EDGE_HALF), ExactModelCoordinate(0, VERTICAL_MULTIP * (1-HEX_EDGE_HALF)), ExactModelCoordinate(0.5, VERTICAL_MULTIP * (1-HEX_EDGE_HALF)) )) { FL_DBG(_log, "..lower part"); result = ModelCoordinate(x, y+1); } else { FL_DBG(_log, "..upper part"); result = ModelCoordinate(x, y); } } else { FL_DBG(_log, "In right triangles"); if (ptInTriangle(ExactModelCoordinate(dx, dy), ExactModelCoordinate(1, VERTICAL_MULTIP * HEX_EDGE_HALF), ExactModelCoordinate(1, VERTICAL_MULTIP * (1-HEX_EDGE_HALF)), ExactModelCoordinate(0.5, VERTICAL_MULTIP * (1-HEX_EDGE_HALF)) )) { FL_DBG(_log, "..lower part"); result = ModelCoordinate(x+1, y+1); } else { FL_DBG(_log, "..upper part"); result = ModelCoordinate(x, y); } } } } FL_DBG(_log, LMsg(" result = ") << result); return result; } void HexGrid::getVertices(std::vector<ExactModelCoordinate>& vtx, const ModelCoordinate& cell) { FL_DBG(_log, LMsg("===============\ngetting vertices for ") << cell); vtx.clear(); double x = static_cast<double>(cell.x); double y = static_cast<double>(cell.y); double horiz_shift = 0; if (cell.y % 2 != 0) { horiz_shift = HEX_TO_EDGE; FL_DBG(_log, "on uneven row"); } double tx, ty; #define ADD_PT(_x, _y) vtx.push_back(ExactModelCoordinate(_x, _y)); // FL_DBG(_log, LMsg("Added point ") << _x << ", " << _y) ty = y - VERTICAL_MULTIP_INV * HEX_EDGE_HALF; tx = x - HEX_TO_EDGE - getXZigzagOffset(ty) + horiz_shift; ADD_PT(tx, ty); ty = y - VERTICAL_MULTIP_INV * HEX_TO_CORNER; tx = x - getXZigzagOffset(ty) + horiz_shift; ADD_PT(tx, ty); ty = y - VERTICAL_MULTIP_INV * HEX_EDGE_HALF; tx = x + HEX_TO_EDGE - getXZigzagOffset(ty) + horiz_shift; ADD_PT(tx, ty); ty = y + VERTICAL_MULTIP_INV * HEX_EDGE_HALF; tx = x + HEX_TO_EDGE - getXZigzagOffset(ty) + horiz_shift; ADD_PT(tx, ty); ty = y + VERTICAL_MULTIP_INV * HEX_TO_CORNER; tx = x - getXZigzagOffset(ty) + horiz_shift; ADD_PT(tx, ty); ty = y + VERTICAL_MULTIP_INV * HEX_EDGE_HALF; tx = x - HEX_TO_EDGE - getXZigzagOffset(ty) + horiz_shift; ADD_PT(tx, ty); } }