Mercurial > eagle-eye
view pyikriam/utils.py @ 350:85c17a9245e3
refined the sheep rules
author | "Rex Tsai <chihchun@kalug.linux.org.tw>" |
---|---|
date | Sun, 15 Feb 2009 02:09:47 +0800 |
parents | 7551342718b6 |
children |
line wrap: on
line source
## \brief decorator is a class decorate another of another object. # # Access of attributes/methods that can not be found in an instance # of a class of this meta-class, decorator, are delegated to the backend # of the instance. # # A backend object always passed as first parameter when # instantiate an instance of a class with decorator as meta-class. # For example, # \code # class foo(object): # __metaclass__ = decorator # # backend.data = 3 # obj = foo(backend) # print obj.data # backend.data = 4 # print obj.data # \endcode # it print out 3 and 4 respectively. # class decorator(type): def __init__(clz, name, base, dict): super(decorator, clz).__init__(name, base, dict) clz.__getattr__ = decorator.__dele_getattr pass @staticmethod def set_backend(obj, backend): obj.__backend = backend pass @staticmethod def __dele_getattr(obj, name): return getattr(obj.__backend, name) pass ## \brief Decorator to make functions or methods dynamic programming. # # dyna_prog result of functions or methods with their arguments as key. # It supposes result of a function always the same if the same arguments # are passed. It cache result of cached function to avoid really calling # function every time. class dyna_prog(object): class functor(object): def __init__(self, instance, method): self._method = method self._instance = instance self._cache = {} pass def __call__(self, *args): try: return self._cache[args] except KeyError: pass instance = self._instance result = self._method(instance, *args) return self._cache.setdefault(args, result) def clear(self): self._cache.clear() pass def __init__(self, method): super(dyna_prog, self).__init__() self._method = method self._functors = {} pass def __get__(self, instance, owner): try: return self._functors[instance] except KeyError: pass functor_o = dyna_prog.functor(instance, self._method) return self._functors.setdefault(instance, functor_o) pass