view decoders/mikmod.c @ 562:7e08477b0fc1

MP3 decoder upgrade work. Ripped out SMPEG and mpglib support, replaced it with "mpg123.c" and libmpg123. libmpg123 is a much better version of mpglib, so it should solve all the problems about MP3's not seeking, or most modern MP3's not playing at all, etc. Since you no longer have to make a tradeoff with SMPEG for features, and SMPEG is basically rotting, I removed it from the project. There is still work to be done with libmpg123...there are MMX, 3DNow, SSE, Altivec, etc decoders which we don't have enabled at the moment, and the build system could use some work to make this compile more cleanly, etc. Still: huge win.
author Ryan C. Gordon <icculus@icculus.org>
date Fri, 30 Jan 2009 02:44:47 -0500
parents 2e8907ff98e9
children
line wrap: on
line source

/*
 * SDL_sound -- An abstract sound format decoding API.
 * Copyright (C) 2001  Ryan C. Gordon.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

/*
 * Module player for SDL_sound. This driver handles anything MikMod does, and
 *  is based on SDL_mixer.
 *
 * Please see the file LICENSE.txt in the source's root directory.
 *
 *  This file written by Torbjörn Andersson (d91tan@Update.UU.SE)
 */

#if HAVE_CONFIG_H
#  include <config.h>
#endif

#ifdef SOUND_SUPPORTS_MIKMOD

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "SDL_sound.h"

#define __SDL_SOUND_INTERNAL__
#include "SDL_sound_internal.h"

#include "mikmod.h"


static int MIKMOD_init(void);
static void MIKMOD_quit(void);
static int MIKMOD_open(Sound_Sample *sample, const char *ext);
static void MIKMOD_close(Sound_Sample *sample);
static Uint32 MIKMOD_read(Sound_Sample *sample);
static int MIKMOD_rewind(Sound_Sample *sample);
static int MIKMOD_seek(Sound_Sample *sample, Uint32 ms);

static const char *extensions_mikmod[] =
{
    "669",   /* Composer 669                                                */
    "AMF",   /* DMP Advanced Module Format                                  */
    "DSM",   /* DSIK internal format                                        */
    "FAR",   /* Farandole module                                            */
    "GDM",   /* General DigiMusic module                                    */
    "IMF",   /* Imago Orpheus module                                        */
    "IT",    /* Impulse tracker                                             */
    "M15",   /* 15 instrument MOD / Ultimate Sound Tracker (old M15 format) */
    "MED",   /* Amiga MED module                                            */
    "MOD",   /* Generic MOD (Protracker, StarTracker, FastTracker, etc)     */
    "MTM",   /* MTM module                                                  */
    "OKT",   /* Oktalyzer module                                            */
    "S3M",   /* Screamtracker module                                        */
    "STM",   /* Screamtracker 2 module                                      */
    "STX",   /* STMIK 0.2 module                                            */
    "ULT",   /* Ultratracker module                                         */
    "UNI",   /* UNIMOD - libmikmod's and APlayer's internal module format   */
    "XM",    /* Fasttracker module                                          */
    NULL
};

const Sound_DecoderFunctions __Sound_DecoderFunctions_MIKMOD =
{
    {
        extensions_mikmod,
        "Play modules through MikMod",
        "Torbjörn Andersson <d91tan@Update.UU.SE>",
        "http://mikmod.raphnet.net/"
    },

    MIKMOD_init,       /*   init() method */
    MIKMOD_quit,       /*   quit() method */
    MIKMOD_open,       /*   open() method */
    MIKMOD_close,      /*  close() method */
    MIKMOD_read,       /*   read() method */
    MIKMOD_rewind,     /* rewind() method */
    MIKMOD_seek        /*   seek() method */
};


/* Make MikMod read from a RWops... */

typedef struct MRWOPSREADER {
    MREADER core;
    Sound_Sample *sample;
    int end;
} MRWOPSREADER;

static BOOL _mm_RWopsReader_eof(MREADER *reader)
{
    MRWOPSREADER *rwops_reader = (MRWOPSREADER *) reader;
    Sound_Sample *sample = rwops_reader->sample;
    Sound_SampleInternal *internal = (Sound_SampleInternal *) sample->opaque;
    int pos = SDL_RWtell(internal->rw);

    if (rwops_reader->end == pos)
        return(1);

    return(0);
} /* _mm_RWopsReader_eof */


static BOOL _mm_RWopsReader_read(MREADER *reader, void *ptr, size_t size)
{
    MRWOPSREADER *rwops_reader = (MRWOPSREADER *) reader;
    Sound_Sample *sample = rwops_reader->sample;
    Sound_SampleInternal *internal = (Sound_SampleInternal *) sample->opaque;
    return(SDL_RWread(internal->rw, ptr, size, 1));
} /* _mm_RWopsReader_Read */


static int _mm_RWopsReader_get(MREADER *reader)
{
    char buf;
    MRWOPSREADER *rwops_reader = (MRWOPSREADER *) reader;
    Sound_Sample *sample = rwops_reader->sample;
    Sound_SampleInternal *internal = (Sound_SampleInternal *) sample->opaque;

    if (SDL_RWread(internal->rw, &buf, 1, 1) != 1)
        return(EOF);

    return((int) buf);
} /* _mm_RWopsReader_get */


static BOOL _mm_RWopsReader_seek(MREADER *reader, long offset, int whence)
{
    MRWOPSREADER *rwops_reader = (MRWOPSREADER *) reader;
    Sound_Sample *sample = rwops_reader->sample;
    Sound_SampleInternal *internal = (Sound_SampleInternal *) sample->opaque;

    return(SDL_RWseek(internal->rw, offset, whence));
} /* _mm_RWopsReader_seek */


static long _mm_RWopsReader_tell(MREADER *reader)
{
    MRWOPSREADER *rwops_reader = (MRWOPSREADER *) reader;
    Sound_Sample *sample = rwops_reader->sample;
    Sound_SampleInternal *internal = (Sound_SampleInternal *) sample->opaque;

    return(SDL_RWtell(internal->rw));
} /* _mm_RWopsReader_tell */


static MREADER *_mm_new_rwops_reader(Sound_Sample *sample)
{
    Sound_SampleInternal *internal = (Sound_SampleInternal *) sample->opaque;

    MRWOPSREADER *reader = (MRWOPSREADER *) malloc(sizeof (MRWOPSREADER));
    if (reader != NULL)
    {
        int failed_seek = 1;
        int here;
        reader->core.Eof  = _mm_RWopsReader_eof;
        reader->core.Read = _mm_RWopsReader_read;
        reader->core.Get  = _mm_RWopsReader_get;
        reader->core.Seek = _mm_RWopsReader_seek;
        reader->core.Tell = _mm_RWopsReader_tell;
        reader->sample = sample;

        /* RWops does not explicitly support an eof check, so we shall find
           the end manually - this requires seek support for the RWop */
        here = SDL_RWtell(internal->rw);
        if (here != -1)
        {
            reader->end = SDL_RWseek(internal->rw, 0, SEEK_END);
            if (reader->end != -1)
            {
                /* Move back */
                if (SDL_RWseek(internal->rw, here, SEEK_SET) != -1)
                    failed_seek = 0;
            } /* if */
        } /* if */

        if (failed_seek)
        {
            free(reader);
            reader = NULL;
        } /* if */
    } /* if */

    return((MREADER *) reader);
} /* _mm_new_rwops_reader */


static void _mm_delete_rwops_reader(MREADER *reader)
{
    /* SDL_sound will delete the RWops and sample at a higher level... */
    if (reader != NULL)
        free(reader);
} /* _mm_delete_rwops_reader */



static int MIKMOD_init(void)
{
    MikMod_RegisterDriver(&drv_nos);
    
        /*
         * Quick and dirty hack to prevent an infinite loop problem
         *  found when using SDL_mixer and SDL_sound together and
         *  both have MikMod compiled in. So, check to see if
         *  MikMod has already been registered first before calling
         *  RegisterAllLoaders()
         */
    if (MikMod_InfoLoader() == NULL)
    {
        MikMod_RegisterAllLoaders();
    } /* if */

        /*
         * Both DMODE_SOFT_MUSIC and DMODE_16BITS should be set by default,
         * so this is just for clarity. I haven't experimented with any of
         * the other flags. There are a few which are said to give better
         * sound quality.
         */
    md_mode |= (DMODE_SOFT_MUSIC | DMODE_16BITS);
    md_mixfreq = 0;
    md_reverb = 1;

    BAIL_IF_MACRO(MikMod_Init(""), MikMod_strerror(MikMod_errno), 0);

    return(1);  /* success. */
} /* MIKMOD_init */


static void MIKMOD_quit(void)
{
    MikMod_Exit();
    md_mixfreq = 0;
} /* MIKMOD_quit */


static int MIKMOD_open(Sound_Sample *sample, const char *ext)
{
    Sound_SampleInternal *internal = (Sound_SampleInternal *) sample->opaque;
    MREADER *reader;
    MODULE *module;
    Uint32 i; /* temp counter for time computation */
    double segment_time = 0.0; /* temp holder for time */
    
    reader = _mm_new_rwops_reader(sample);
    BAIL_IF_MACRO(reader == NULL, ERR_OUT_OF_MEMORY, 0);
    module = Player_LoadGeneric(reader, 64, 0);
    _mm_delete_rwops_reader(reader);
    BAIL_IF_MACRO(module == NULL, "MIKMOD: Not a module file.", 0);

    module->extspd  = 1;
    module->panflag = 1;
    module->wrap    = 0;
    module->loop    = 0;

    if (md_mixfreq == 0)
        md_mixfreq = (!sample->desired.rate) ? 44100 : sample->desired.rate;

    sample->actual.channels = 2;
    sample->actual.rate = md_mixfreq;
    sample->actual.format = AUDIO_S16SYS;
    internal->decoder_private = (void *) module;

    Player_Start(module);
    Player_SetPosition(0);

    sample->flags = SOUND_SAMPLEFLAG_NONE;

    /*
     *   module->sngtime = current song time in 2^-10 seconds
     *   internal->total_time = (module->sngtime * 1000) / (1<<10)
     */
    internal->total_time = (module->sngtime * 1000) / (1<<10);

    SNDDBG(("MIKMOD: Name: %s\n", module->songname));
    SNDDBG(("MIKMOD: Type: %s\n", module->modtype));
    SNDDBG(("MIKMOD: Accepting data stream\n"));


    /* 
     * This is a quick and dirty way for getting the play time
     * of a file. This will often be wrong because the tracker format
     * allows for so much. If you want a better one, use ModPlug,
     * demand that the Mikmod people write better functionality,
     * or write a more complicated version of the code below.
     *
     * There are two dumb ways to compute the length. The really
     * dumb way is to look at the header and take the initial
     * speed/tempo  values. However, speed values can change throughout
     * the file. The slightly smarter way is to iterate through
     * all the positions and add up each segment's time based
     * on the idea that each segment will give us its own
     * speed value. The hope is that this is more accurate.
     * However, this demands that the file be seekable
     * and that we can change the position of the sample.
     * Depending on the assumptions of SDL_sound, this block
     * of code should be enabled or disabled. If disabled,
     * you still can make the computations doing the first method.
     * For now, we will assume it's acceptable to seek a Mod file
     * since this is essentially how Modplug also does it.
     *
     * Keep in mind that this will be incorrect for loops, jumps, short
     * patterns and other features.
     */
    sample->flags |= SOUND_SAMPLEFLAG_CANSEEK;

    /* 
     * For each position (which corresponds to a particular pattern),
     * get the speed values and compute the time length of the segment
     */
    internal->total_time = 0;
    for (i = 0; i < module->numpos; i++)
    {
        Player_SetPosition(i);
        /* Must call update, or the speed values won't get reset */
        MikMod_Update();
        /* Now the magic formula:
         * Multiply the number of positions by the
         * Number of rows (usually 64 but can be different) by the
         * time it takes to read one row (1/50)
         * by the speed by the 
         * magic reference beats per minute / the beats per minute
         * 
         * We're using positions instead of patterns because in our
         * test cases, this seems to be the correct value for the 
         * number of sections you hear during normal playback.
         * They typically map to a fewer number of patterns
         * where some patterns get replayed multiple times
         * in a song (think chorus). Since we're in a for-loop,
         * the multiplication is implicit while we're adding
         * all the segments.
         * 
         * From a tracker format spec, it seems that 64 rows
         * is the normal (00-3F), but I've seen songs that 
         * either have less or are jumping positions in the
         * middle of a pattern. It looks like Mikmod might
         * reveal this number for us.
         *
         * According to the spec, it seems that a speed of 1
         * corresponds to reading 1 row in 50 ticks. However,
         * I'm not sure if ticks are real seconds or this
         * notion of second units: 
         * Assuming that it's just normal seconds, we get 1/50 = 0.02.
         *
         * The current speed and current tempo (beats per minute) 
         * we can just grab. However, we need a magic number 
         * to figure out what the tempo is based on. Our primitive
         * stopwatch results and intuition seem to imply 120-130bpm 
         * is the magic number. Looking at the majority of tracker
         * files I have, 125 seems to be the common value. Furthermore
         * most (if not all) of my Future Crew .S3M (Scream Tracker 3)
         * files also use 125. Since they invented that format, 
         * I'll also assume that's the base number.
         */
        if(module->bpm == 0)
        {
            /* 
             * Should never get here, but I don't want any
             * divide by zero errors
             */
            continue;
        } /* if */
        segment_time += (module->numrow * .02 * module->sngspd *
                          125.0 / module->bpm);
    } /* for */
    /* Now convert to milliseconds and store the value */
    internal->total_time = (Sint32)(segment_time * 1000);

    /* Reset the sample to the beginning */
    Player_SetPosition(0);
    MikMod_Update();

    return(1); /* we'll handle this data. */
} /* MIKMOD_open */


static void MIKMOD_close(Sound_Sample *sample)
{
    Sound_SampleInternal *internal = (Sound_SampleInternal *) sample->opaque;
    MODULE *module = (MODULE *) internal->decoder_private;

    Player_Free(module);
} /* MIKMOD_close */


static Uint32 MIKMOD_read(Sound_Sample *sample)
{
    Sound_SampleInternal *internal = (Sound_SampleInternal *) sample->opaque;
    MODULE *module = (MODULE *) internal->decoder_private;

        /* Switch to the current module, stopping any previous one. */
    Player_Start(module);
    if (!Player_Active())
    {
        sample->flags |= SOUND_SAMPLEFLAG_EOF;
        return(0);
    } /* if */
    return((Uint32) VC_WriteBytes(internal->buffer, internal->buffer_size));
} /* MIKMOD_read */


static int MIKMOD_rewind(Sound_Sample *sample)
{
    Sound_SampleInternal *internal = (Sound_SampleInternal *) sample->opaque;
    MODULE *module = (MODULE *) internal->decoder_private;

    Player_Start(module);
    Player_SetPosition(0);
    return(1);
} /* MIKMOD_rewind */


static int MIKMOD_seek(Sound_Sample *sample, Uint32 ms)
{
    Sound_SampleInternal *internal = (Sound_SampleInternal *) sample->opaque;
    MODULE *module = (MODULE *) internal->decoder_private;
    double last_time = 0.0;
    double current_time = 0.0;
    double target_time;
    Uint32 i; 

        /*
         * Heaven may know what the argument to Player_SetPosition() is.
         * I, however, haven't the faintest idea.
         */
    Player_Start(module);

        /*
         * Mikmod only lets you seek to the beginning of a pattern.
         * This means we'll get very coarse grain seeks. The 
         * value we pass to SetPosition is a value between 0 
         * and the number of positions in the file. The
         * dumb approach would be to take our total_time that
         * we've already calculated and divide it up by the 
         * number of positions and seek to the position that results.
         * However, because songs can alter their speed/tempo during
         * playback, different patterns in the song can take 
         * up different amounts of time. So the slightly
         * smarter approach is to repeat what was done in the
         * total_time computation and traverse through the file
         * until we find the closest position.
         * The follwing is basically cut and paste from the 
         * open function.
         */
    if (ms == 0)  /* Check end conditions to simplify things */
    {
        Player_SetPosition(0);
        return(1);
    } /* if */

    if (ms >= internal->total_time)
        Player_SetPosition(module->numpos);

    /* Convert time to seconds (double) to make comparisons easier */
    target_time = ms / 1000.0;
    
    for (i = 0; i < module->numpos; i++)
    {
        Player_SetPosition(i);
        /* Must call update, or the speed values won't get reset */
        MikMod_Update();
        /* Divide by zero check */
        if(module->bpm == 0)
            continue;
        last_time = current_time;
        /* See the notes in the open function about the formula */
        current_time += (module->numrow * .02 
            * module->sngspd * 125.0 / module->bpm);
        if(target_time <= current_time)
            break; /* We now have our interval, so break out */
    } /* for */
    
    if( (target_time-last_time) > (current_time-target_time) )
    {
        /* The target time is closer to the higher position, so go there */
        Player_SetPosition(i+1);
    } /* if */
    else
    {
        /* The target time is closer to the lower position, so go there */
        Player_SetPosition(i);
    } /* else */

    return(1);
} /* MIKMOD_seek */

#endif /* SOUND_SUPPORTS_MIKMOD */


/* end of mikmod.c ... */