view decoders/timidity/instrum_dls.c @ 563:11bb8cb8ebc8

I think we can call playsound a 1.0 release by now. :)
author Ryan C. Gordon <icculus@icculus.org>
date Fri, 30 Jan 2009 02:45:38 -0500
parents 4d2febf33dc7
children d02c00ce16d9
line wrap: on
line source

/*

    TiMidity -- Experimental MIDI to WAVE converter
    Copyright (C) 1995 Tuukka Toivonen <toivonen@clinet.fi>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

   instrum.h

   */

#include <stdlib.h>
#include <string.h>

#include "SDL.h"
#include "SDL_endian.h"
#include "SDL_rwops.h"

#include "SDL_sound.h"

#define __SDL_SOUND_INTERNAL__
#include "SDL_sound_internal.h"

#include "timidity.h"
#include "options.h"
#include "instrum.h"
#include "tables.h"
#include "common.h"

/*-------------------------------------------------------------------------*/
/* * * * * * * * * * * * * * * * * load_riff.h * * * * * * * * * * * * * * */
/*-------------------------------------------------------------------------*/
typedef struct _RIFF_Chunk {
    Uint32 magic;
    Uint32 length;
    Uint32 subtype;
    Uint8  *data;
    struct _RIFF_Chunk *child;
    struct _RIFF_Chunk *next;
} RIFF_Chunk;

extern DECLSPEC RIFF_Chunk* SDLCALL LoadRIFF(SDL_RWops *src);
extern DECLSPEC void SDLCALL FreeRIFF(RIFF_Chunk *chunk);
extern DECLSPEC void SDLCALL PrintRIFF(RIFF_Chunk *chunk, int level);
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*-------------------------------------------------------------------------*/
/* * * * * * * * * * * * * * * * * load_riff.c * * * * * * * * * * * * * * */
/*-------------------------------------------------------------------------*/
#define RIFF        0x46464952        /* "RIFF" */
#define LIST        0x5453494c        /* "LIST" */

static RIFF_Chunk *AllocRIFFChunk()
{
    RIFF_Chunk *chunk = (RIFF_Chunk *)malloc(sizeof(*chunk));
    if ( !chunk ) {
        __Sound_SetError(ERR_OUT_OF_MEMORY);
        return NULL;
    }
    memset(chunk, 0, sizeof(*chunk));
    return chunk;
}

static void FreeRIFFChunk(RIFF_Chunk *chunk)
{
    if ( chunk->child ) {
        FreeRIFFChunk(chunk->child);
    }
    if ( chunk->next ) {
        FreeRIFFChunk(chunk->next);
    }
    free(chunk);
}

static int ChunkHasSubType(Uint32 magic)
{
    static Uint32 chunk_list[] = {
        RIFF, LIST
    };
    int i;
    for ( i = 0; i < SDL_TABLESIZE(chunk_list); ++i ) {
        if ( magic == chunk_list[i] ) {
            return 1;
        }
    }
    return 0;
}

static int ChunkHasSubChunks(Uint32 magic)
{
    static Uint32 chunk_list[] = {
        RIFF, LIST
    };
    int i;
    for ( i = 0; i < SDL_TABLESIZE(chunk_list); ++i ) {
        if ( magic == chunk_list[i] ) {
            return 1;
        }
    }
    return 0;
}

static void LoadSubChunks(RIFF_Chunk *chunk, Uint8 *data, Uint32 left)
{
    Uint8 *subchunkData;
    Uint32 subchunkDataLen;

    while ( left > 8 ) {
        RIFF_Chunk *child = AllocRIFFChunk();
        RIFF_Chunk *next, *prev = NULL;
        for ( next = chunk->child; next; next = next->next ) {
            prev = next;
        }
        if ( prev ) {
            prev->next = child;
        } else {
            chunk->child = child;
        }
            
        child->magic = (data[0] <<  0) |
                       (data[1] <<  8) |
                       (data[2] << 16) |
                       (data[3] << 24);
        data += 4;
        left -= 4;
        child->length = (data[0] <<  0) |
                        (data[1] <<  8) |
                        (data[2] << 16) |
                        (data[3] << 24);
        data += 4;
        left -= 4;
        child->data = data;

        if ( child->length > left ) {
            child->length = left;
        }

        subchunkData = child->data;
        subchunkDataLen = child->length;
        if ( ChunkHasSubType(child->magic) && subchunkDataLen >= 4 ) {
            child->subtype = (subchunkData[0] <<  0) |
                     (subchunkData[1] <<  8) |
                     (subchunkData[2] << 16) |
                     (subchunkData[3] << 24);
            subchunkData += 4;
            subchunkDataLen -= 4;
        }
        if ( ChunkHasSubChunks(child->magic) ) {
            LoadSubChunks(child, subchunkData, subchunkDataLen);
        }

        data += child->length;
        left -= child->length;
    }
}

RIFF_Chunk *LoadRIFF(SDL_RWops *src)
{
    RIFF_Chunk *chunk;
    Uint8 *subchunkData;
    Uint32 subchunkDataLen;

    /* Allocate the chunk structure */
    chunk = AllocRIFFChunk();

    /* Make sure the file is in RIFF format */
    chunk->magic    = SDL_ReadLE32(src);
    chunk->length    = SDL_ReadLE32(src);
    if ( chunk->magic != RIFF ) {
        __Sound_SetError("Not a RIFF file");
        FreeRIFFChunk(chunk);
        return NULL;
    }
    chunk->data = (Uint8 *)malloc(chunk->length);
    if ( chunk->data == NULL ) {
        __Sound_SetError(ERR_OUT_OF_MEMORY);
        FreeRIFFChunk(chunk);
        return NULL;
    }
    if ( SDL_RWread(src, chunk->data, chunk->length, 1) != 1 ) {
        __Sound_SetError(ERR_IO_ERROR);
        FreeRIFF(chunk);
        return NULL;
    }
    subchunkData = chunk->data;
    subchunkDataLen = chunk->length;
    if ( ChunkHasSubType(chunk->magic) && subchunkDataLen >= 4 ) {
        chunk->subtype = (subchunkData[0] <<  0) |
                 (subchunkData[1] <<  8) |
                 (subchunkData[2] << 16) |
                 (subchunkData[3] << 24);
        subchunkData += 4;
        subchunkDataLen -= 4;
    }
    if ( ChunkHasSubChunks(chunk->magic) ) {
        LoadSubChunks(chunk, subchunkData, subchunkDataLen);
    }
    return chunk;
}

void FreeRIFF(RIFF_Chunk *chunk)
{
    free(chunk->data);
    FreeRIFFChunk(chunk);
}

void PrintRIFF(RIFF_Chunk *chunk, int level)
{
    static char prefix[128];

    if ( level == sizeof(prefix)-1 ) {
        return;
    }
    if ( level > 0 ) {
        prefix[(level-1)*2] = ' ';
        prefix[(level-1)*2+1] = ' ';
    }
    prefix[level*2] = '\0';
    printf("%sChunk: %c%c%c%c (%d bytes)", prefix,
        ((chunk->magic >>  0) & 0xFF),
        ((chunk->magic >>  8) & 0xFF),
        ((chunk->magic >> 16) & 0xFF),
        ((chunk->magic >> 24) & 0xFF), chunk->length);
    if ( chunk->subtype ) {
        printf(" subtype: %c%c%c%c",
            ((chunk->subtype >>  0) & 0xFF),
            ((chunk->subtype >>  8) & 0xFF),
            ((chunk->subtype >> 16) & 0xFF),
            ((chunk->subtype >> 24) & 0xFF));
    }
    printf("\n");
    if ( chunk->child ) {
        printf("%s{\n", prefix);
        PrintRIFF(chunk->child, level + 1);
        printf("%s}\n", prefix);
    }
    if ( chunk->next ) {
        PrintRIFF(chunk->next, level);
    }
    if ( level > 0 ) {
        prefix[(level-1)*2] = '\0';
    }
}

#ifdef TEST_MAIN_RIFF

main(int argc, char *argv[])
{
    int i;
    for ( i = 1; i < argc; ++i ) {
        RIFF_Chunk *chunk;
        SDL_RWops *src = SDL_RWFromFile(argv[i], "rb");
        if ( !src ) {
            fprintf(stderr, "Couldn't open %s: %s", argv[i], SDL_GetError());
            continue;
        }
        chunk = LoadRIFF(src);
        if ( chunk ) {
            PrintRIFF(chunk, 0);
            FreeRIFF(chunk);
        } else {
            fprintf(stderr, "Couldn't load %s: %s\n", argv[i], SDL_GetError());
        }
        SDL_RWclose(src);
    }
}

#endif // TEST_MAIN
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*-------------------------------------------------------------------------*/
/* * * * * * * * * * * * * * * * * load_dls.h  * * * * * * * * * * * * * * */
/*-------------------------------------------------------------------------*/
/* This code is based on the DLS spec version 1.1, available at:
    http://www.midi.org/about-midi/dls/dlsspec.shtml
*/

/* Some typedefs so the public dls headers don't need to be modified */
#define FAR
typedef Uint8   BYTE;
typedef Sint16  SHORT;
typedef Uint16  USHORT;
typedef Uint16  WORD;
typedef Sint32  LONG;
typedef Uint32  ULONG;
typedef Uint32  DWORD;
#define mmioFOURCC(A, B, C, D)    \
    (((A) <<  0) | ((B) <<  8) | ((C) << 16) | ((D) << 24))
#define DEFINE_GUID(A, B, C, E, F, G, H, I, J, K, L, M)

#include "dls1.h"
#include "dls2.h"

typedef struct _WaveFMT {
    WORD wFormatTag;
    WORD wChannels;
    DWORD dwSamplesPerSec;
    DWORD dwAvgBytesPerSec;
    WORD wBlockAlign;
    WORD wBitsPerSample;
} WaveFMT;

typedef struct _DLS_Wave {
    WaveFMT *format;
    Uint8 *data;
    Uint32 length;
    WSMPL *wsmp;
    WLOOP *wsmp_loop;
} DLS_Wave;

typedef struct _DLS_Region {
    RGNHEADER *header;
    WAVELINK *wlnk;
    WSMPL *wsmp;
    WLOOP *wsmp_loop;
    CONNECTIONLIST *art;
    CONNECTION *artList;
} DLS_Region;

typedef struct _DLS_Instrument {
    const char *name;
    INSTHEADER *header;
    DLS_Region *regions;
    CONNECTIONLIST *art;
    CONNECTION *artList;
} DLS_Instrument;

typedef struct _DLS_Data {
    struct _RIFF_Chunk *chunk;

    Uint32 cInstruments;
    DLS_Instrument *instruments;

    POOLTABLE *ptbl;
    POOLCUE *ptblList;
    DLS_Wave *waveList;

    const char *name;
    const char *artist;
    const char *copyright;
    const char *comments;
} DLS_Data;

extern DECLSPEC DLS_Data* SDLCALL LoadDLS(SDL_RWops *src);
extern DECLSPEC void SDLCALL FreeDLS(DLS_Data *chunk);
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*-------------------------------------------------------------------------*/
/* * * * * * * * * * * * * * * * * load_dls.c  * * * * * * * * * * * * * * */
/*-------------------------------------------------------------------------*/

#define FOURCC_LIST    0x5453494c   /* "LIST" */
#define FOURCC_FMT     0x20746D66   /* "fmt " */
#define FOURCC_DATA    0x61746164   /* "data" */
#define FOURCC_INFO    mmioFOURCC('I','N','F','O')
#define FOURCC_IARL    mmioFOURCC('I','A','R','L')
#define FOURCC_IART    mmioFOURCC('I','A','R','T')
#define FOURCC_ICMS    mmioFOURCC('I','C','M','S')
#define FOURCC_ICMT    mmioFOURCC('I','C','M','T')
#define FOURCC_ICOP    mmioFOURCC('I','C','O','P')
#define FOURCC_ICRD    mmioFOURCC('I','C','R','D')
#define FOURCC_IENG    mmioFOURCC('I','E','N','G')
#define FOURCC_IGNR    mmioFOURCC('I','G','N','R')
#define FOURCC_IKEY    mmioFOURCC('I','K','E','Y')
#define FOURCC_IMED    mmioFOURCC('I','M','E','D')
#define FOURCC_INAM    mmioFOURCC('I','N','A','M')
#define FOURCC_IPRD    mmioFOURCC('I','P','R','D')
#define FOURCC_ISBJ    mmioFOURCC('I','S','B','J')
#define FOURCC_ISFT    mmioFOURCC('I','S','F','T')
#define FOURCC_ISRC    mmioFOURCC('I','S','R','C')
#define FOURCC_ISRF    mmioFOURCC('I','S','R','F')
#define FOURCC_ITCH    mmioFOURCC('I','T','C','H')


static void FreeRegions(DLS_Instrument *instrument)
{
    if ( instrument->regions ) {
        free(instrument->regions);
    }
}

static void AllocRegions(DLS_Instrument *instrument)
{
    int datalen = (instrument->header->cRegions * sizeof(DLS_Region));
    FreeRegions(instrument);
    instrument->regions = (DLS_Region *)malloc(datalen);
    if ( instrument->regions ) {
        memset(instrument->regions, 0, datalen);
    }
}

static void FreeInstruments(DLS_Data *data)
{
    if ( data->instruments ) {
        Uint32 i;
        for ( i = 0; i < data->cInstruments; ++i ) {
            FreeRegions(&data->instruments[i]);
        }
        free(data->instruments);
    }
}

static void AllocInstruments(DLS_Data *data)
{
    int datalen = (data->cInstruments * sizeof(DLS_Instrument));
    FreeInstruments(data);
    data->instruments = (DLS_Instrument *)malloc(datalen);
    if ( data->instruments ) {
        memset(data->instruments, 0, datalen);
    }
}

static void FreeWaveList(DLS_Data *data)
{
    if ( data->waveList ) {
        free(data->waveList);
    }
}

static void AllocWaveList(DLS_Data *data)
{
    int datalen = (data->ptbl->cCues * sizeof(DLS_Wave));
    FreeWaveList(data);
    data->waveList = (DLS_Wave *)malloc(datalen);
    if ( data->waveList ) {
        memset(data->waveList, 0, datalen);
    }
}

static void Parse_colh(DLS_Data *data, RIFF_Chunk *chunk)
{
    data->cInstruments = SDL_SwapLE32(*(Uint32 *)chunk->data);
    AllocInstruments(data);
}

static void Parse_insh(DLS_Data *data, RIFF_Chunk *chunk, DLS_Instrument *instrument)
{
    INSTHEADER *header = (INSTHEADER *)chunk->data;
    header->cRegions = SDL_SwapLE32(header->cRegions);
    header->Locale.ulBank = SDL_SwapLE32(header->Locale.ulBank);
    header->Locale.ulInstrument = SDL_SwapLE32(header->Locale.ulInstrument);
    instrument->header = header;
    AllocRegions(instrument);
}

static void Parse_rgnh(DLS_Data *data, RIFF_Chunk *chunk, DLS_Region *region)
{
    RGNHEADER *header = (RGNHEADER *)chunk->data;
    header->RangeKey.usLow = SDL_SwapLE16(header->RangeKey.usLow);
    header->RangeKey.usHigh = SDL_SwapLE16(header->RangeKey.usHigh);
    header->RangeVelocity.usLow = SDL_SwapLE16(header->RangeVelocity.usLow);
    header->RangeVelocity.usHigh = SDL_SwapLE16(header->RangeVelocity.usHigh);
    header->fusOptions = SDL_SwapLE16(header->fusOptions);
    header->usKeyGroup = SDL_SwapLE16(header->usKeyGroup);
    region->header = header;
}

static void Parse_wlnk(DLS_Data *data, RIFF_Chunk *chunk, DLS_Region *region)
{
    WAVELINK *wlnk = (WAVELINK *)chunk->data;
    wlnk->fusOptions = SDL_SwapLE16(wlnk->fusOptions);
    wlnk->usPhaseGroup = SDL_SwapLE16(wlnk->usPhaseGroup);
    wlnk->ulChannel = SDL_SwapLE16(wlnk->ulChannel);
    wlnk->ulTableIndex = SDL_SwapLE16(wlnk->ulTableIndex);
    region->wlnk = wlnk;
}

static void Parse_wsmp(DLS_Data *data, RIFF_Chunk *chunk, WSMPL **wsmp_ptr, WLOOP **wsmp_loop_ptr)
{
    Uint32 i;
    WSMPL *wsmp = (WSMPL *)chunk->data;
    WLOOP *loop;
    wsmp->cbSize = SDL_SwapLE32(wsmp->cbSize);
    wsmp->usUnityNote = SDL_SwapLE16(wsmp->usUnityNote);
    wsmp->sFineTune = SDL_SwapLE16(wsmp->sFineTune);
    wsmp->lAttenuation = SDL_SwapLE32(wsmp->lAttenuation);
    wsmp->fulOptions = SDL_SwapLE32(wsmp->fulOptions);
    wsmp->cSampleLoops = SDL_SwapLE32(wsmp->cSampleLoops);
    loop = (WLOOP *)((Uint8 *)chunk->data + wsmp->cbSize);
    *wsmp_ptr = wsmp;
    *wsmp_loop_ptr = loop;
    for ( i = 0; i < wsmp->cSampleLoops; ++i ) {
        loop->cbSize = SDL_SwapLE32(loop->cbSize);
        loop->ulType = SDL_SwapLE32(loop->ulType);
        loop->ulStart = SDL_SwapLE32(loop->ulStart);
        loop->ulLength = SDL_SwapLE32(loop->ulLength);
        ++loop;
    }
}

static void Parse_art(DLS_Data *data, RIFF_Chunk *chunk, CONNECTIONLIST **art_ptr, CONNECTION **artList_ptr)
{
    Uint32 i;
    CONNECTIONLIST *art = (CONNECTIONLIST *)chunk->data;
    CONNECTION *artList;
    art->cbSize = SDL_SwapLE32(art->cbSize);
    art->cConnections = SDL_SwapLE32(art->cConnections);
    artList = (CONNECTION *)((Uint8 *)chunk->data + art->cbSize);
    *art_ptr = art;
    *artList_ptr = artList;
    for ( i = 0; i < art->cConnections; ++i ) {
        artList->usSource = SDL_SwapLE16(artList->usSource);
        artList->usControl = SDL_SwapLE16(artList->usControl);
        artList->usDestination = SDL_SwapLE16(artList->usDestination);
        artList->usTransform = SDL_SwapLE16(artList->usTransform);
        artList->lScale = SDL_SwapLE32(artList->lScale);
        ++artList;
    }
}

static void Parse_lart(DLS_Data *data, RIFF_Chunk *chunk, CONNECTIONLIST **conn_ptr, CONNECTION **connList_ptr)
{
    /* FIXME: This only supports one set of connections */
    for ( chunk = chunk->child; chunk; chunk = chunk->next ) {
        Uint32 magic = (chunk->magic == FOURCC_LIST) ? chunk->subtype : chunk->magic;
        switch(magic) {
            case FOURCC_ART1:
            case FOURCC_ART2:
                Parse_art(data, chunk, conn_ptr, connList_ptr);
                return;
        }
    }
}

static void Parse_rgn(DLS_Data *data, RIFF_Chunk *chunk, DLS_Region *region)
{
    for ( chunk = chunk->child; chunk; chunk = chunk->next ) {
        Uint32 magic = (chunk->magic == FOURCC_LIST) ? chunk->subtype : chunk->magic;
        switch(magic) {
            case FOURCC_RGNH:
                Parse_rgnh(data, chunk, region);
                break;
            case FOURCC_WLNK:
                Parse_wlnk(data, chunk, region);
                break;
            case FOURCC_WSMP:
                Parse_wsmp(data, chunk, &region->wsmp, &region->wsmp_loop);
                break;
            case FOURCC_LART:
            case FOURCC_LAR2:
                Parse_lart(data, chunk, &region->art, &region->artList);
                break;
        }
    }
}

static void Parse_lrgn(DLS_Data *data, RIFF_Chunk *chunk, DLS_Instrument *instrument)
{
    Uint32 region = 0;
    for ( chunk = chunk->child; chunk; chunk = chunk->next ) {
        Uint32 magic = (chunk->magic == FOURCC_LIST) ? chunk->subtype : chunk->magic;
        switch(magic) {
            case FOURCC_RGN:
            case FOURCC_RGN2:
                if ( region < instrument->header->cRegions ) {
                    Parse_rgn(data, chunk, &instrument->regions[region++]);
                }
                break;
        }
    }
}

static void Parse_INFO_INS(DLS_Data *data, RIFF_Chunk *chunk, DLS_Instrument *instrument)
{
    for ( chunk = chunk->child; chunk; chunk = chunk->next ) {
        Uint32 magic = (chunk->magic == FOURCC_LIST) ? chunk->subtype : chunk->magic;
        switch(magic) {
            case FOURCC_INAM: /* Name */
                instrument->name = chunk->data;
                break;
        }
    }
}

static void Parse_ins(DLS_Data *data, RIFF_Chunk *chunk, DLS_Instrument *instrument)
{
    for ( chunk = chunk->child; chunk; chunk = chunk->next ) {
        Uint32 magic = (chunk->magic == FOURCC_LIST) ? chunk->subtype : chunk->magic;
        switch(magic) {
            case FOURCC_INSH:
                Parse_insh(data, chunk, instrument);
                break;
            case FOURCC_LRGN:
                Parse_lrgn(data, chunk, instrument);
                break;
            case FOURCC_LART:
            case FOURCC_LAR2:
                Parse_lart(data, chunk, &instrument->art, &instrument->artList);
                break;
            case FOURCC_INFO:
                Parse_INFO_INS(data, chunk, instrument);
                break;
        }
    }
}

static void Parse_lins(DLS_Data *data, RIFF_Chunk *chunk)
{
    Uint32 instrument = 0;
    for ( chunk = chunk->child; chunk; chunk = chunk->next ) {
        Uint32 magic = (chunk->magic == FOURCC_LIST) ? chunk->subtype : chunk->magic;
        switch(magic) {
            case FOURCC_INS:
                if ( instrument < data->cInstruments ) {
                    Parse_ins(data, chunk, &data->instruments[instrument++]);
                }
                break;
        }
    }
}

static void Parse_ptbl(DLS_Data *data, RIFF_Chunk *chunk)
{
    Uint32 i;
    POOLTABLE *ptbl = (POOLTABLE *)chunk->data;
    ptbl->cbSize = SDL_SwapLE32(ptbl->cbSize);
    ptbl->cCues = SDL_SwapLE32(ptbl->cCues);
    data->ptbl = ptbl;
    data->ptblList = (POOLCUE *)((Uint8 *)chunk->data + ptbl->cbSize);
    for ( i = 0; i < ptbl->cCues; ++i ) {
        data->ptblList[i].ulOffset = SDL_SwapLE32(data->ptblList[i].ulOffset);
    }
    AllocWaveList(data);
}

static void Parse_fmt(DLS_Data *data, RIFF_Chunk *chunk, DLS_Wave *wave)
{
    WaveFMT *fmt = (WaveFMT *)chunk->data;
    fmt->wFormatTag = SDL_SwapLE16(fmt->wFormatTag);
    fmt->wChannels = SDL_SwapLE16(fmt->wChannels);
    fmt->dwSamplesPerSec = SDL_SwapLE32(fmt->dwSamplesPerSec);
    fmt->dwAvgBytesPerSec = SDL_SwapLE32(fmt->dwAvgBytesPerSec);
    fmt->wBlockAlign = SDL_SwapLE16(fmt->wBlockAlign);
    fmt->wBitsPerSample = SDL_SwapLE16(fmt->wBitsPerSample);
    wave->format = fmt;
}

static void Parse_data(DLS_Data *data, RIFF_Chunk *chunk, DLS_Wave *wave)
{
    wave->data = chunk->data;
    wave->length = chunk->length;
}

static void Parse_wave(DLS_Data *data, RIFF_Chunk *chunk, DLS_Wave *wave)
{
    for ( chunk = chunk->child; chunk; chunk = chunk->next ) {
        Uint32 magic = (chunk->magic == FOURCC_LIST) ? chunk->subtype : chunk->magic;
        switch(magic) {
            case FOURCC_FMT:
                Parse_fmt(data, chunk, wave);
                break;
            case FOURCC_DATA:
                Parse_data(data, chunk, wave);
                break;
            case FOURCC_WSMP:
                Parse_wsmp(data, chunk, &wave->wsmp, &wave->wsmp_loop);
                break;
        }
    }
}

static void Parse_wvpl(DLS_Data *data, RIFF_Chunk *chunk)
{
    Uint32 wave = 0;
    for ( chunk = chunk->child; chunk; chunk = chunk->next ) {
        Uint32 magic = (chunk->magic == FOURCC_LIST) ? chunk->subtype : chunk->magic;
        switch(magic) {
            case FOURCC_wave:
                if ( wave < data->ptbl->cCues ) {
                    Parse_wave(data, chunk, &data->waveList[wave++]);
                }
                break;
        }
    }
}

static void Parse_INFO_DLS(DLS_Data *data, RIFF_Chunk *chunk)
{
    for ( chunk = chunk->child; chunk; chunk = chunk->next ) {
        Uint32 magic = (chunk->magic == FOURCC_LIST) ? chunk->subtype : chunk->magic;
        switch(magic) {
            case FOURCC_IARL: /* Archival Location */
                break;
            case FOURCC_IART: /* Artist */
                data->artist = chunk->data;
                break;
            case FOURCC_ICMS: /* Commisioned */
                break;
            case FOURCC_ICMT: /* Comments */
                data->comments = chunk->data;
                break;
            case FOURCC_ICOP: /* Copyright */
                data->copyright = chunk->data;
                break;
            case FOURCC_ICRD: /* Creation Date */
                break;
            case FOURCC_IENG: /* Engineer */
                break;
            case FOURCC_IGNR: /* Genre */
                break;
            case FOURCC_IKEY: /* Keywords */
                break;
            case FOURCC_IMED: /* Medium */
                break;
            case FOURCC_INAM: /* Name */
                data->name = chunk->data;
                break;
            case FOURCC_IPRD: /* Product */
                break;
            case FOURCC_ISBJ: /* Subject */
                break;
            case FOURCC_ISFT: /* Software */
                break;
            case FOURCC_ISRC: /* Source */
                break;
            case FOURCC_ISRF: /* Source Form */
                break;
            case FOURCC_ITCH: /* Technician */
                break;
        }
    }
}

DLS_Data *LoadDLS(SDL_RWops *src)
{
    RIFF_Chunk *chunk;
    DLS_Data *data = (DLS_Data *)malloc(sizeof(*data));
    if ( !data ) {
        __Sound_SetError(ERR_OUT_OF_MEMORY);
        return NULL;
    }
    memset(data, 0, sizeof(*data));

    data->chunk = LoadRIFF(src);
    if ( !data->chunk ) {
        FreeDLS(data);
        return NULL;
    }

    for ( chunk = data->chunk->child; chunk; chunk = chunk->next ) {
        Uint32 magic = (chunk->magic == FOURCC_LIST) ? chunk->subtype : chunk->magic;
        switch(magic) {
            case FOURCC_COLH:
                Parse_colh(data, chunk);
                break;
            case FOURCC_LINS:
                Parse_lins(data, chunk);
                break;
            case FOURCC_PTBL:
                Parse_ptbl(data, chunk);
                break;
            case FOURCC_WVPL:
                Parse_wvpl(data, chunk);
                break;
            case FOURCC_INFO:
                Parse_INFO_DLS(data, chunk);
                break;
        }
    }
    return data;
}

void FreeDLS(DLS_Data *data)
{
    if ( data->chunk ) {
        FreeRIFF(data->chunk);
    }
    FreeInstruments(data);
    FreeWaveList(data);
    free(data);
}

static const char *SourceToString(USHORT usSource)
{
    switch(usSource) {
        case CONN_SRC_NONE:
            return "NONE";
        case CONN_SRC_LFO:
            return "LFO";
        case CONN_SRC_KEYONVELOCITY:
            return "KEYONVELOCITY";
        case CONN_SRC_KEYNUMBER:
            return "KEYNUMBER";
        case CONN_SRC_EG1:
            return "EG1";
        case CONN_SRC_EG2:
            return "EG2";
        case CONN_SRC_PITCHWHEEL:
            return "PITCHWHEEL";
        case CONN_SRC_CC1:
            return "CC1";
        case CONN_SRC_CC7:
            return "CC7";
        case CONN_SRC_CC10:
            return "CC10";
        case CONN_SRC_CC11:
            return "CC11";
        case CONN_SRC_POLYPRESSURE:
            return "POLYPRESSURE";
        case CONN_SRC_CHANNELPRESSURE:
            return "CHANNELPRESSURE";
        case CONN_SRC_VIBRATO:
            return "VIBRATO";
        case CONN_SRC_MONOPRESSURE:
            return "MONOPRESSURE";
        case CONN_SRC_CC91:
            return "CC91";
        case CONN_SRC_CC93:
            return "CC93";
        default:
            return "UNKNOWN";
    }
}

static const char *TransformToString(USHORT usTransform)
{
    switch (usTransform) {
        case CONN_TRN_NONE:
            return "NONE";
        case CONN_TRN_CONCAVE:
            return "CONCAVE";
        case CONN_TRN_CONVEX:
            return "CONVEX";
        case CONN_TRN_SWITCH:
            return "SWITCH";
        default:
            return "UNKNOWN";
    }
}

static const char *DestinationToString(USHORT usDestination)
{
    switch (usDestination) {
        case CONN_DST_NONE:
            return "NONE";
        case CONN_DST_ATTENUATION:
            return "ATTENUATION";
        case CONN_DST_PITCH:
            return "PITCH";
        case CONN_DST_PAN:
            return "PAN";
        case CONN_DST_LFO_FREQUENCY:
            return "LFO_FREQUENCY";
        case CONN_DST_LFO_STARTDELAY:
            return "LFO_STARTDELAY";
        case CONN_DST_EG1_ATTACKTIME:
            return "EG1_ATTACKTIME";
        case CONN_DST_EG1_DECAYTIME:
            return "EG1_DECAYTIME";
        case CONN_DST_EG1_RELEASETIME:
            return "EG1_RELEASETIME";
        case CONN_DST_EG1_SUSTAINLEVEL:
            return "EG1_SUSTAINLEVEL";
        case CONN_DST_EG2_ATTACKTIME:
            return "EG2_ATTACKTIME";
        case CONN_DST_EG2_DECAYTIME:
            return "EG2_DECAYTIME";
        case CONN_DST_EG2_RELEASETIME:
            return "EG2_RELEASETIME";
        case CONN_DST_EG2_SUSTAINLEVEL:
            return "EG2_SUSTAINLEVEL";
        case CONN_DST_KEYNUMBER:
            return "KEYNUMBER";
        case CONN_DST_LEFT:
            return "LEFT";
        case CONN_DST_RIGHT:
            return "RIGHT";
        case CONN_DST_CENTER:
            return "CENTER";
        case CONN_DST_LEFTREAR:
            return "LEFTREAR";
        case CONN_DST_RIGHTREAR:
            return "RIGHTREAR";
        case CONN_DST_LFE_CHANNEL:
            return "LFE_CHANNEL";
        case CONN_DST_CHORUS:
            return "CHORUS";
        case CONN_DST_REVERB:
            return "REVERB";
        case CONN_DST_VIB_FREQUENCY:
            return "VIB_FREQUENCY";
        case CONN_DST_VIB_STARTDELAY:
            return "VIB_STARTDELAY";
        case CONN_DST_EG1_DELAYTIME:
            return "EG1_DELAYTIME";
        case CONN_DST_EG1_HOLDTIME:
            return "EG1_HOLDTIME";
        case CONN_DST_EG1_SHUTDOWNTIME:
            return "EG1_SHUTDOWNTIME";
        case CONN_DST_EG2_DELAYTIME:
            return "EG2_DELAYTIME";
        case CONN_DST_EG2_HOLDTIME:
            return "EG2_HOLDTIME";
        case CONN_DST_FILTER_CUTOFF:
            return "FILTER_CUTOFF";
        case CONN_DST_FILTER_Q:
            return "FILTER_Q";
        default:
            return "UNKOWN";
    }
}

static void PrintArt(const char *type, CONNECTIONLIST *art, CONNECTION *artList)
{
    Uint32 i;
    printf("%s Connections:\n", type);
    for ( i = 0; i < art->cConnections; ++i ) {
        printf("  Source: %s, Control: %s, Destination: %s, Transform: %s, Scale: %d\n",
            SourceToString(artList[i].usSource),
            SourceToString(artList[i].usControl),
            DestinationToString(artList[i].usDestination),
            TransformToString(artList[i].usTransform),
            artList[i].lScale);
    }
}

static void PrintWave(DLS_Wave *wave, Uint32 index)
{
    WaveFMT *format = wave->format;
    if ( format ) {
        printf("  Wave %u: Format: %hu, %hu channels, %u Hz, %hu bits (length = %u)\n", index, format->wFormatTag, format->wChannels, format->dwSamplesPerSec, format->wBitsPerSample, wave->length);
    }
    if ( wave->wsmp ) {
        Uint32 i;
        printf("    wsmp->usUnityNote = %hu\n", wave->wsmp->usUnityNote);
        printf("    wsmp->sFineTune = %hd\n", wave->wsmp->sFineTune);
        printf("    wsmp->lAttenuation = %d\n", wave->wsmp->lAttenuation);
        printf("    wsmp->fulOptions = 0x%8.8x\n", wave->wsmp->fulOptions);
        printf("    wsmp->cSampleLoops = %u\n", wave->wsmp->cSampleLoops);
        for ( i = 0; i < wave->wsmp->cSampleLoops; ++i ) {
            WLOOP *loop = &wave->wsmp_loop[i];
            printf("    Loop %u:\n", i);
            printf("      ulStart = %u\n", loop->ulStart);
            printf("      ulLength = %u\n", loop->ulLength);
        }
    }
}

static void PrintRegion(DLS_Region *region, Uint32 index)
{
    printf("  Region %u:\n", index);
    if ( region->header ) {
        printf("    RangeKey = { %hu - %hu }\n", region->header->RangeKey.usLow, region->header->RangeKey.usHigh);
        printf("    RangeVelocity = { %hu - %hu }\n", region->header->RangeVelocity.usLow, region->header->RangeVelocity.usHigh);
        printf("    fusOptions = 0x%4.4hx\n", region->header->fusOptions);
        printf("    usKeyGroup = %hu\n", region->header->usKeyGroup);
    }
    if ( region->wlnk ) {
        printf("    wlnk->fusOptions = 0x%4.4hx\n", region->wlnk->fusOptions);
        printf("    wlnk->usPhaseGroup = %hu\n", region->wlnk->usPhaseGroup);
        printf("    wlnk->ulChannel = %u\n", region->wlnk->ulChannel);
        printf("    wlnk->ulTableIndex = %u\n", region->wlnk->ulTableIndex);
    }
    if ( region->wsmp ) {
        Uint32 i;
        printf("    wsmp->usUnityNote = %hu\n", region->wsmp->usUnityNote);
        printf("    wsmp->sFineTune = %hd\n", region->wsmp->sFineTune);
        printf("    wsmp->lAttenuation = %d\n", region->wsmp->lAttenuation);
        printf("    wsmp->fulOptions = 0x%8.8x\n", region->wsmp->fulOptions);
        printf("    wsmp->cSampleLoops = %u\n", region->wsmp->cSampleLoops);
        for ( i = 0; i < region->wsmp->cSampleLoops; ++i ) {
            WLOOP *loop = &region->wsmp_loop[i];
            printf("    Loop %u:\n", i);
            printf("      ulStart = %u\n", loop->ulStart);
            printf("      ulLength = %u\n", loop->ulLength);
        }
    }
    if ( region->art && region->art->cConnections > 0 ) {
        PrintArt("Region", region->art, region->artList);
    }
}

static void PrintInstrument(DLS_Instrument *instrument, Uint32 index)
{
    printf("Instrument %u:\n", index);
    if ( instrument->name ) {
        printf("  Name: %s\n", instrument->name);
    }
    if ( instrument->header ) {
        Uint32 i;
        printf("  ulBank = 0x%8.8x\n", instrument->header->Locale.ulBank);
        printf("  ulInstrument = %u\n", instrument->header->Locale.ulInstrument);
        printf("  Regions: %u\n", instrument->header->cRegions);
        for ( i = 0; i < instrument->header->cRegions; ++i ) {
            PrintRegion(&instrument->regions[i], i);
        }
    }
    if ( instrument->art && instrument->art->cConnections > 0 ) {
        PrintArt("Instrument", instrument->art, instrument->artList);
    }
};

void PrintDLS(DLS_Data *data)
{
    printf("DLS Data:\n");
    printf("cInstruments = %u\n", data->cInstruments); 
    if ( data->instruments ) {
        Uint32 i;
        for ( i = 0; i < data->cInstruments; ++i ) {
            PrintInstrument(&data->instruments[i], i);
        }
    }
    if ( data->ptbl && data->ptbl->cCues > 0 ) {
        Uint32 i;
        printf("Cues: ");
        for ( i = 0; i < data->ptbl->cCues; ++i ) {
            if ( i > 0 ) {
                printf(", ");
            }
            printf("%u", data->ptblList[i].ulOffset);
        }
        printf("\n");
    }
    if ( data->waveList ) {
        Uint32 i;
        printf("Waves:\n");
        for ( i = 0; i < data->ptbl->cCues; ++i ) {
            PrintWave(&data->waveList[i], i);
        }
    }
    if ( data->name ) {
        printf("Name: %s\n", data->name);
    }
    if ( data->artist ) {
        printf("Artist: %s\n", data->artist);
    }
    if ( data->copyright ) {
        printf("Copyright: %s\n", data->copyright);
    }
    if ( data->comments ) {
        printf("Comments: %s\n", data->comments);
    }
}

#ifdef TEST_MAIN_DLS

main(int argc, char *argv[])
{
    int i;
    for ( i = 1; i < argc; ++i ) {
        DLS_Data *data;
        SDL_RWops *src = SDL_RWFromFile(argv[i], "rb");
        if ( !src ) {
            fprintf(stderr, "Couldn't open %s: %s", argv[i], SDL_GetError());
            continue;
        }
        data = LoadDLS(src);
        if ( data ) {
            PrintRIFF(data->chunk, 0);
            PrintDLS(data);
            FreeDLS(data);
        } else {
            fprintf(stderr, "Couldn't load %s: %s\n", argv[i], SDL_GetError());
        }
        SDL_RWclose(src);
    }
}

#endif // TEST_MAIN
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*-------------------------------------------------------------------------*/
/* * * * * * * * * * * * * * * * * instrum_dls.c * * * * * * * * * * * * * */
/*-------------------------------------------------------------------------*/

DLS_Data *Timidity_LoadDLS(SDL_RWops *src)
{
  DLS_Data *patches = LoadDLS(src);
  if (!patches) {
    SNDDBG(("%s", SDL_GetError()));
  }
  return patches;
}

void Timidity_FreeDLS(DLS_Data *patches)
{
  FreeDLS(patches);
}

/* convert timecents to sec */
static double to_msec(int timecent)
{
  if (timecent == 0x80000000 || timecent == 0)
    return 0.0;
  return 1000.0 * pow(2.0, (double)(timecent / 65536) / 1200.0);
}

/* convert decipercent to {0..1} */
static double to_normalized_percent(int decipercent)
{
  return ((double)(decipercent / 65536)) / 1000.0;
}

/* convert from 8bit value to fractional offset (15.15) */
static Sint32 to_offset(int offset)
{
	return (Sint32)offset << (7+15);
}

/* calculate ramp rate in fractional unit;
 * diff = 8bit, time = msec
 */
static Sint32 calc_rate(MidiSong *song, int diff, int sample_rate, double msec)
{
    double rate;

    if(msec < 6)
      msec = 6;
    if(diff == 0)
      diff = 255;
    diff <<= (7+15);
    rate = ((double)diff / song->rate) * song->control_ratio * 1000.0 / msec;
    return (Sint32)rate;
}

static int load_connection(ULONG cConnections, CONNECTION *artList, USHORT destination)
{
  ULONG i;
  int value = 0;
  for (i = 0; i < cConnections; ++i) {
    CONNECTION *conn = &artList[i];
    if(conn->usDestination == destination) {
      // The formula for the destination is:
      // usDestination = usDestination + usTransform(usSource * (usControl * lScale))
      // Since we are only handling source/control of NONE and identity
      // transform, this simplifies to: usDestination = usDestination + lScale
      if (conn->usSource == CONN_SRC_NONE &&
          conn->usControl == CONN_SRC_NONE &&
          conn->usTransform == CONN_TRN_NONE)
        value += conn->lScale;
    }
  }
  return value;
}

static void load_region_dls(MidiSong *song, Sample *sample, DLS_Instrument *ins, Uint32 index)
{
  DLS_Region *rgn = &ins->regions[index];
  DLS_Wave *wave = &song->patches->waveList[rgn->wlnk->ulTableIndex];

  sample->low_freq = freq_table[rgn->header->RangeKey.usLow];
  sample->high_freq = freq_table[rgn->header->RangeKey.usHigh];
  sample->root_freq = freq_table[rgn->wsmp->usUnityNote];
  sample->low_vel = rgn->header->RangeVelocity.usLow;
  sample->high_vel = rgn->header->RangeVelocity.usHigh;

  sample->modes = MODES_16BIT;
  sample->sample_rate = wave->format->dwSamplesPerSec;
  sample->data_length = wave->length / 2;
  sample->data = (sample_t *)safe_malloc(wave->length);
  memcpy(sample->data, wave->data, wave->length);
  if (rgn->wsmp->cSampleLoops) {
    sample->modes |= (MODES_LOOPING|MODES_SUSTAIN);
    sample->loop_start = rgn->wsmp_loop->ulStart / 2;
    sample->loop_end = sample->loop_start + (rgn->wsmp_loop->ulLength / 2);
  }
  sample->volume = 1.0f;

  if (sample->modes & MODES_SUSTAIN) {
    int value;
    double attack, hold, decay, release; int sustain;
    CONNECTIONLIST *art = NULL;
    CONNECTION *artList = NULL;

    if (ins->art && ins->art->cConnections > 0 && ins->artList) {
      art = ins->art;
      artList = ins->artList;
    } else {
      art = rgn->art;
      artList = rgn->artList;
    }

    value = load_connection(art->cConnections, artList, CONN_DST_EG1_ATTACKTIME);
    attack = to_msec(value);
    value = load_connection(art->cConnections, artList, CONN_DST_EG1_HOLDTIME);
    hold = to_msec(value);
    value = load_connection(art->cConnections, artList, CONN_DST_EG1_DECAYTIME);
    decay = to_msec(value);
    value = load_connection(art->cConnections, artList, CONN_DST_EG1_RELEASETIME);
    release = to_msec(value);
    value = load_connection(art->cConnections, artList, CONN_DST_EG1_SUSTAINLEVEL);
    sustain = (int)((1.0 - to_normalized_percent(value)) * 250.0);
    value = load_connection(art->cConnections, artList, CONN_DST_PAN);
    sample->panning = (int)((0.5 + to_normalized_percent(value)) * 127.0);

/*
printf("%d, Rate=%d LV=%d HV=%d Low=%d Hi=%d Root=%d Pan=%d Attack=%f Hold=%f Sustain=%d Decay=%f Release=%f\n", index, sample->sample_rate, rgn->header->RangeVelocity.usLow, rgn->header->RangeVelocity.usHigh, sample->low_freq, sample->high_freq, sample->root_freq, sample->panning, attack, hold, sustain, decay, release);
*/

    sample->envelope_offset[0] = to_offset(255);
    sample->envelope_rate[0] = calc_rate(song, 255, sample->sample_rate, attack);

    sample->envelope_offset[1] = to_offset(250);
    sample->envelope_rate[1] = calc_rate(song, 5, sample->sample_rate, hold);

    sample->envelope_offset[2] = to_offset(sustain);
    sample->envelope_rate[2] = calc_rate(song, 255 - sustain, sample->sample_rate, decay);

    sample->envelope_offset[3] = to_offset(0);
    sample->envelope_rate[3] = calc_rate(song, 5 + sustain, sample->sample_rate, release);

    sample->envelope_offset[4] = to_offset(0);
    sample->envelope_rate[4] = to_offset(1);

    sample->envelope_offset[5] = to_offset(0);
    sample->envelope_rate[5] = to_offset(1);

    sample->modes |= MODES_ENVELOPE;
  }

  sample->data_length <<= FRACTION_BITS;
  sample->loop_start <<= FRACTION_BITS;
  sample->loop_end <<= FRACTION_BITS;
}

Instrument *load_instrument_dls(MidiSong *song, int drum, int bank, int instrument)
{
  Instrument *inst;
  Uint32 i;
  DLS_Instrument *dls_ins;

  if (!song->patches)
   return(NULL);

  drum = drum ? 0x80000000 : 0;
  for (i = 0; i < song->patches->cInstruments; ++i) {
    dls_ins = &song->patches->instruments[i];
    if ((dls_ins->header->Locale.ulBank & 0x80000000) == drum &&
        ((dls_ins->header->Locale.ulBank >> 8) & 0xFF) == bank &&
        dls_ins->header->Locale.ulInstrument == instrument)
      break;
  }
  if (i == song->patches->cInstruments && !bank) {
    for (i = 0; i < song->patches->cInstruments; ++i) {
      dls_ins = &song->patches->instruments[i];
      if ((dls_ins->header->Locale.ulBank & 0x80000000) == drum &&
          dls_ins->header->Locale.ulInstrument == instrument)
        break;
    }
  }
  if (i == song->patches->cInstruments) {
    SNDDBG(("Couldn't find %s instrument %d in bank %d\n", drum ? "drum" : "melodic", instrument, bank));
    return(NULL);
  }

  inst = (Instrument *)safe_malloc(sizeof(*inst));
  inst->samples = dls_ins->header->cRegions;
  inst->sample = (Sample *)safe_malloc(inst->samples * sizeof(*inst->sample));
  memset(inst->sample, 0, inst->samples * sizeof(*inst->sample));
/*
printf("Found %s instrument %d in bank %d named %s with %d regions\n", drum ? "drum" : "melodic", instrument, bank, dls_ins->name, inst->samples);
*/
  for (i = 0; i < dls_ins->header->cRegions; ++i) {
    load_region_dls(song, &inst->sample[i], dls_ins, i);
  }
  return(inst);
}