Mercurial > MadButterfly
view src/shape_rect.c @ 221:ad4f8a956505
Implement a workaround for the button class. However, this won't solve all issues. We can use this as example to fix the mouse out event issue. When we move the curosr over the text inside the button. The upper layer group will receive MOUSE_OUT events. This is absolute incorrect.
author | wycc |
---|---|
date | Sun, 14 Dec 2008 12:35:13 +0800 |
parents | c234ee745ceb |
children | 29e1b2bffe4c |
line wrap: on
line source
#include <stdio.h> #include <stdlib.h> #include <string.h> #include "mb_types.h" #include "mb_shapes.h" typedef struct _sh_rect { shape_t shape; co_aix x, y; co_aix w, h; co_aix rx, ry; co_aix poses[12][2]; } sh_rect_t; static void sh_rect_free(shape_t *shape) { free(shape); } shape_t *rdman_shape_rect_new(redraw_man_t *rdman, co_aix x, co_aix y, co_aix w, co_aix h, co_aix rx, co_aix ry) { sh_rect_t *rect; rect = (sh_rect_t *)malloc(sizeof(sh_rect_t)); if(rect == NULL) return NULL; memset(rect, 0, sizeof(sh_rect_t)); MBO_TYPE(rect) = MBO_RECT; rect->x = x; rect->y = y; rect->w = w; rect->h = h; rect->rx = rx; rect->ry = ry; rect->shape.free = sh_rect_free; rdman_shape_man(rdman, (shape_t *)rect); return (shape_t *)rect; } void sh_rect_set(shape_t *shape, co_aix x, co_aix y, co_aix w, co_aix h, co_aix rx, co_aix ry) { sh_rect_t *rect = (sh_rect_t *)shape; rect->x = x; rect->y = y; rect->w = w; rect->h = h; rect->rx = rx; rect->ry = ry; } void sh_rect_transform(shape_t *shape) { sh_rect_t *rect = (sh_rect_t *)shape; co_aix x, y, w, h, rx, ry; co_aix (*poses)[2]; co_aix width; area_t *area; int i; x = rect->x; y = rect->y; w = rect->w; h = rect->h; rx = rect->rx; ry = rect->ry; poses = rect->poses; if(rect->rx != 0 && rect->ry != 0) { poses[0][0] = x + w - rx; poses[0][1] = y; poses[1][0] = x + w; poses[1][1] = y; poses[2][0] = x + w; poses[2][1] = y + ry; poses[3][0] = x + w; poses[3][1] = y + h - ry; poses[4][0] = x + w; poses[4][1] = y + h; poses[5][0] = x + w - rx; poses[5][1] = y + h; poses[6][0] = x + rx; poses[6][1] = y + h; poses[7][0] = x; poses[7][1] = y + h; poses[8][0] = x; poses[8][1] = y + h - ry; poses[9][0] = x; poses[9][1] = y + ry; poses[10][0] = x; poses[10][1] = y; poses[11][0] = x + rx; poses[11][1] = y; for(i = 0; i < 12; i++) coord_trans_pos(shape->coord, &poses[i][0], &poses[i][1]); geo_from_positions(shape->geo, 12, poses); } else { poses[0][0] = x; poses[0][1] = y; poses[1][0] = x + w; poses[1][1] = y; poses[2][0] = x + w; poses[2][1] = y + h; poses[3][0] = x; poses[3][1] = y + h; for(i = 0; i < 4; i++) coord_trans_pos(shape->coord, &poses[i][0], &poses[i][1]); geo_from_positions(shape->geo, 4, poses); } if(shape->stroke) { area = shape->geo->cur_area; width = shape->stroke_width; area->x -= width / 2 + 1; area->y -= width / 2 + 1; area->w += width + 2; area->h += width + 2; } } void sh_rect_draw(shape_t *shape, cairo_t *cr) { sh_rect_t *rect = (sh_rect_t *)shape; int i; co_aix (*poses)[2]; poses = rect->poses; if(rect->rx != 0 && rect->ry != 0) { cairo_move_to(cr, poses[11][0], poses[11][1]); for(i = 0; i < 12; i += 3) { cairo_line_to(cr, poses[i][0], poses[i][1]); cairo_curve_to(cr, poses[i + 1][0], poses[i + 1][1], poses[i + 1][0], poses[i + 1][1], poses[i + 2][0], poses[i + 2][1]); } } else { cairo_move_to(cr, poses[3][0], poses[3][1]); for(i = 0; i < 4; i++) cairo_line_to(cr, poses[i][0], poses[i][1]); } }