Mercurial > MadButterfly
view pyink/tween.py @ 1160:1a699dc00fa3
Fix the issue of not removing node in old scene when switching scenes.
- When a timeline is playing and crossing two scenes (tween block),
nodes, for the old scene, in duplicate group must be removed. But,
it is not.
- It is fixed by checking if nodes, in the duplicate group, are also
in the key frame next to the new scene. All nodes that is not in
next key frame are remove.
author | Thinker K.F. Li <thinker@codemud.net> |
---|---|
date | Tue, 28 Dec 2010 13:35:34 +0800 |
parents | 3a891dccabd8 |
children | c23593881507 |
line wrap: on
line source
# -*- indent-tabs-mode: t; tab-width: 8; python-indent: 4; -*- # vim: sw=4:ts=8:sts=4 import traceback import math class TweenObject: TWEEN_TYPE_NORMAL = 0 #TWEEN_TYPE_RELOCATE = 1 TWEEN_TYPE_SCALE = 1 def __init__(self,doc,dom): self.document = doc self.dom = dom try: self.width = float(dom.getAttribute("width")) self.height = float(dom.getAttribute("height")) except: self.width = 640 self.height = 480 def updateMapping(self): self.nodeToItem={} root = self.dom self.updateMappingNode(root) def updateMappingNode(self,node): for c in node.childList(): self.updateMappingNode(c) try: self.nodeToItem[c.getAttribute("id")] = c except: pass def updateTweenContent(self, duplicate_group, tween_type, start_scene_group, stop_scene_group, percent): """ Update the content of the duplicate scene group. We will use precent, start_scene_group, stop_scene_group to compute transform matrix and update duplicate scene group specified. """ # Collect ref from the obj node = duplicate_group.firstChild() dup_nodes = {} while node: try: ref = node.getAttribute("ref") dup_nodes[ref] = node except: ref = None pass node = node.next() pass # Collect all nodes in stop scene stop_nodes = {} node = stop_scene_group.firstChild() while node: try: node_label = node.getAttribute("ns0:duplicate-src") stop_nodes[node_label] = node except: pass node = node.next() pass # Remove duplicate nodes that is not in the set of stop nodes for node_ref in dup_nodes: if node_ref not in stop_nodes: node = dup_nodes[node_ref] duplicate_group.removeChild(node) pass pass # # Node ID of a node of start scene must be mapped to # 'ns0:duplicate-src' attribute of a node of stop scene. The # nodes which can not be mapped to a node of stop scene are # not manipulated by the tween. # # When a scene is duplicated, 'ns0:duplicate-src' attribute of # nodes, in the new scene, must be setted to ID of respective # one in the duplicated scene. # start_node = start_scene_group.firstChild() while start_node: start_node_id = start_node.getAttribute('id') try: stop_node = stop_nodes[start_node_id] except KeyError: self.updateTweenObject(duplicate_group, tween_type, start_node, start_node, percent, dup_node) start_node = start_node.next() continue dup_node = dup_nodes.setdefault(start_node_id, None) self.updateTweenObject(duplicate_group, tween_type, start_node, stop_node, percent, dup_node) start_node = start_node.next() pass pass def parseTransform(self,obj): """ Return the transform matrix of an object """ try: t = obj.getAttribute("transform") print t if t[0:9] == 'translate': print "translate" fields = t[10:].split(',') x = float(fields[0]) fields = fields[1].split(')') y = float(fields[0]) return [1,0,0,1,x,y] elif t[0:6] == 'matrix': print "matrix" fields=t[7:].split(')') fields = fields[0].split(',') return [float(fields[0]),float(fields[1]),float(fields[2]),float(fields[3]),float(fields[4]),float(fields[5])] except: #traceback.print_exc() return [1,0,0,1,0,0] def invA(self,m): d = m[0]*m[3]-m[2]*m[1] return [m[3]/d, -m[1]/d, -m[2]/d, m[0]/d, (m[1]*m[5]-m[4]*m[3])/d, (m[4]*m[2]-m[0]*m[5])/d] def mulA(self,a,b): return [a[0]*b[0]+a[1]*b[2], a[0]*b[1]+a[1]*b[3], a[2]*b[0]+a[3]*b[2], a[2]*b[1]+a[3]*b[3], a[0]*b[4]+a[1]*b[5]+a[4], a[2]*b[4]+a[3]*b[5]+a[5]] def decomposition(self,m): """ Decompose the affine matrix into production of translation,rotation,shear and scale. The algorithm is documented at http://lists.w3.org/Archives/Public/www-style/2010Jun/0602.html """ if m[0]*m[3] == m[1]*m[2]: print "The affine matrix is singular" return [1,0,0,1,0,0] A=m[0] B=m[2] C=m[1] D=m[3] E=m[4] F=m[5] sx = math.sqrt(A*A+B*B) A = A/sx B = B/sx shear = m[0]*m[1]+m[2]*m[3] C = C - A*shear D = D - B*shear sy = math.sqrt(C*C+D*D) C = C/sy D = D/sy r = A*D-B*C if r == -1: shear = -shear sy = -sy R = math.atan2(B,A) return [sx,sy, R, E,F] def updateTweenObject(self,obj,typ,s,d,p,newobj): """ Generate tweened object in the @obj by using s and d in the @p percent http://lists.w3.org/Archives/Public/www-style/2010Jun/0602.html """ if typ == self.TWEEN_TYPE_SCALE: self.updateTweenObjectScale(obj,s,d,p,newobj) pass elif typ == self.TWEEN_TYPE_NORMAL: newobj = s.duplicate(self.document) newobj.setAttribute("ref", s.getAttribute("id")) top = self.document.createElement("svg:g") top.appendChild(newobj) obj.appendChild(top) pass def updateTweenObjectScale(self,obj,s,d,p,newobj): """ Generate a new group which contains the original group and then add the transform matrix to generate a tween frame between the origin and destination scene group. We will parse the transform matrix of the @s and @d and then generate the matrix which is (1-p) of @s and p percent of @d. """ if newobj == None: newobj = s.duplicate(self.document) top = self.document.createElement("svg:g") top.setAttribute("ref",s.getAttribute("id")) top.appendChild(newobj) obj.appendChild(top) else: top = newobj newobj = top.firstChild() if s.name() == 'svg:g': # Parse the translate or matrix # # D = B inv(A) try: item = self.nodeToItem[s.getAttribute("id")] (ox,oy) = item.getCenter() except: ox = 0 oy = 0 try: item = self.nodeToItem[d.getAttribute("id")] (dx,dy) = item.getCenter() except: dx = 0 dy = 0 sm = self.parseTransform(s) ss = self.decomposition(sm) dm = self.parseTransform(d) dd = self.decomposition(dm) sx = (ss[0]*(1-p)+dd[0]*p)/ss[0] sy = (ss[1]*(1-p)+dd[1]*p)/ss[0] a = ss[2]*(1-p)+dd[2]*p-ss[2] tx = ox*(1-p)+dx*p ty = oy*(1-p)+dy*p m = [math.cos(a),math.sin(a),-math.sin(a),math.cos(a),0,0] m = self.mulA([sx,0,0,sy,0,0],m) m = self.mulA(m,[1,0,0,1,-ox,oy-self.height]) m = self.mulA([1,0,0,1,tx,self.height-ty],m) top.setAttribute("transform","matrix(%g,%g,%g,%g,%g,%g)" % (m[0],m[2],m[1],m[3],m[4],m[5])) else: try: try: sw = float(s.getAttribute("width")) except: sw = 1 try: sh = float(s.getAttribute("height")) except: sh = 1 try: dw = float(d.getAttribute("width")) except: dw = 1 try: dh = float(d.getAttribute("height")) except: dh = 1 try: item = self.nodeToItem[s.getAttribute("id")] (ox,oy) = item.getCenter() except: ox = 0 oy = 0 try: item = self.nodeToItem[d.getAttribute("id")] (dx,dy) = item.getCenter() except: dx = 0 dy = 0 try: sm = self.parseTransform(s) ss = self.decomposition(sm) except: ss = [1,1,0,0,0] pass try: dm = self.parseTransform(d) dd = self.decomposition(dm) print "dd=",dd except: dd = [1,1,0,0,0] dd[0] = dd[0]*dw/sw dd[1] = dd[1]*dh/sh print "ss[0]=",ss[0],"dd[0]=",dd[0] sx = (ss[0]*(1-p)+dd[0]*p)/ss[0] sy = (ss[1]*(1-p)+dd[1]*p)/ss[1] print "sx=",sx,"sy=",sy a = ss[2]*(1-p)+dd[2]*p-ss[2] tx = ox*(1-p)+dx*p ty = oy*(1-p)+dy*p m = [math.cos(a),math.sin(a),-math.sin(a),math.cos(a),0,0] m = self.mulA([sx,0,0,sy,0,0],m) m = self.mulA(m,[1,0,0,1,-ox,oy-self.height]) m = self.mulA([1,0,0,1,tx,self.height-ty],m) top.setAttribute("transform","matrix(%g,%g,%g,%g,%g,%g)" % (m[0],m[2],m[1],m[3],m[4],m[5])) except: traceback.print_exc()